L(s) = 1 | − 2-s − 4-s + 2·5-s − 4·7-s + 8-s − 4·9-s − 2·10-s − 11-s − 7·13-s + 4·14-s + 3·16-s + 4·18-s − 6·19-s − 2·20-s + 22-s + 4·23-s + 2·25-s + 7·26-s + 4·28-s + 3·29-s − 3·31-s − 3·32-s − 8·35-s + 4·36-s + 3·37-s + 6·38-s + 2·40-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.894·5-s − 1.51·7-s + 0.353·8-s − 4/3·9-s − 0.632·10-s − 0.301·11-s − 1.94·13-s + 1.06·14-s + 3/4·16-s + 0.942·18-s − 1.37·19-s − 0.447·20-s + 0.213·22-s + 0.834·23-s + 2/5·25-s + 1.37·26-s + 0.755·28-s + 0.557·29-s − 0.538·31-s − 0.530·32-s − 1.35·35-s + 2/3·36-s + 0.493·37-s + 0.973·38-s + 0.316·40-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10130 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10130 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.9705009657, −16.6823097671, −16.0145032545, −15.2492916429, −14.8390964063, −14.2293951292, −14.0660916490, −13.1126867682, −12.9189322405, −12.4021606525, −11.9419072691, −10.9039897235, −10.5272409215, −9.96395120285, −9.38987967442, −9.17632518264, −8.67046031761, −7.81724768831, −7.22763325435, −6.31659580982, −5.92738277418, −5.21223927154, −4.34714388484, −2.99824975312, −2.54695632700, 0,
2.54695632700, 2.99824975312, 4.34714388484, 5.21223927154, 5.92738277418, 6.31659580982, 7.22763325435, 7.81724768831, 8.67046031761, 9.17632518264, 9.38987967442, 9.96395120285, 10.5272409215, 10.9039897235, 11.9419072691, 12.4021606525, 12.9189322405, 13.1126867682, 14.0660916490, 14.2293951292, 14.8390964063, 15.2492916429, 16.0145032545, 16.6823097671, 16.9705009657