Properties

Label 2-9310-1.1-c1-0-85
Degree $2$
Conductor $9310$
Sign $1$
Analytic cond. $74.3407$
Root an. cond. $8.62210$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s − 2·9-s − 10-s + 12-s + 4·13-s + 15-s + 16-s + 8·17-s + 2·18-s − 19-s + 20-s + 5·23-s − 24-s + 25-s − 4·26-s − 5·27-s − 3·29-s − 30-s − 2·31-s − 32-s − 8·34-s − 2·36-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.288·12-s + 1.10·13-s + 0.258·15-s + 1/4·16-s + 1.94·17-s + 0.471·18-s − 0.229·19-s + 0.223·20-s + 1.04·23-s − 0.204·24-s + 1/5·25-s − 0.784·26-s − 0.962·27-s − 0.557·29-s − 0.182·30-s − 0.359·31-s − 0.176·32-s − 1.37·34-s − 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9310\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(74.3407\)
Root analytic conductor: \(8.62210\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.224874247\)
\(L(\frac12)\) \(\approx\) \(2.224874247\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 + 17 T + p T^{2} \) 1.89.r
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87830612547539244038244085089, −7.24489913121926546413343207344, −6.33987359833703583046103837522, −5.75051329941539782115882290010, −5.21681239209785594417734063439, −3.91788032933759710853462308982, −3.25358463791154476192374828153, −2.62645613747516749673976398880, −1.61798690286758371100534669135, −0.814833936495207955295525018375, 0.814833936495207955295525018375, 1.61798690286758371100534669135, 2.62645613747516749673976398880, 3.25358463791154476192374828153, 3.91788032933759710853462308982, 5.21681239209785594417734063439, 5.75051329941539782115882290010, 6.33987359833703583046103837522, 7.24489913121926546413343207344, 7.87830612547539244038244085089

Graph of the $Z$-function along the critical line