Properties

Label 2-9225-1.1-c1-0-231
Degree $2$
Conductor $9225$
Sign $-1$
Analytic cond. $73.6619$
Root an. cond. $8.58265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·7-s + 2·13-s + 4·16-s − 7·17-s + 6·19-s − 4·28-s − 7·29-s + 3·37-s − 41-s − 5·43-s − 3·49-s − 4·52-s − 7·53-s − 14·59-s + 61-s − 8·64-s + 2·67-s + 14·68-s + 7·71-s + 3·73-s − 12·76-s + 10·79-s + 14·83-s − 7·89-s + 4·91-s − 12·97-s + ⋯
L(s)  = 1  − 4-s + 0.755·7-s + 0.554·13-s + 16-s − 1.69·17-s + 1.37·19-s − 0.755·28-s − 1.29·29-s + 0.493·37-s − 0.156·41-s − 0.762·43-s − 3/7·49-s − 0.554·52-s − 0.961·53-s − 1.82·59-s + 0.128·61-s − 64-s + 0.244·67-s + 1.69·68-s + 0.830·71-s + 0.351·73-s − 1.37·76-s + 1.12·79-s + 1.53·83-s − 0.741·89-s + 0.419·91-s − 1.21·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9225\)    =    \(3^{2} \cdot 5^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(73.6619\)
Root analytic conductor: \(8.58265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
41 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61122226004038614019204616525, −6.65701861079484676778234933882, −5.93665291599261526039250972586, −5.08354147988145076291484449852, −4.72976238457494919343474733063, −3.89159705681680618594694693660, −3.23864990114924671493142556091, −2.04968671750905412037886780951, −1.19014502772381063096931677856, 0, 1.19014502772381063096931677856, 2.04968671750905412037886780951, 3.23864990114924671493142556091, 3.89159705681680618594694693660, 4.72976238457494919343474733063, 5.08354147988145076291484449852, 5.93665291599261526039250972586, 6.65701861079484676778234933882, 7.61122226004038614019204616525

Graph of the $Z$-function along the critical line