Properties

Label 2-910-1.1-c1-0-23
Degree $2$
Conductor $910$
Sign $-1$
Analytic cond. $7.26638$
Root an. cond. $2.69562$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s − 2·9-s − 10-s − 5·11-s − 12-s − 13-s + 14-s + 15-s + 16-s + 2·17-s − 2·18-s − 6·19-s − 20-s − 21-s − 5·22-s − 3·23-s − 24-s + 25-s − 26-s + 5·27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s − 1.50·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.471·18-s − 1.37·19-s − 0.223·20-s − 0.218·21-s − 1.06·22-s − 0.625·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.962·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(910\)    =    \(2 \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(7.26638\)
Root analytic conductor: \(2.69562\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 910,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08118361209269534739122723327, −8.517979701972612992710112116129, −7.993331686971697038775733351604, −7.00318815334225711564307306201, −5.95542821103104987285543734461, −5.26575472203688448064136784067, −4.48757382051147212534675136997, −3.25841080774946936203711237253, −2.15831730349145946196247078896, 0, 2.15831730349145946196247078896, 3.25841080774946936203711237253, 4.48757382051147212534675136997, 5.26575472203688448064136784067, 5.95542821103104987285543734461, 7.00318815334225711564307306201, 7.993331686971697038775733351604, 8.517979701972612992710112116129, 10.08118361209269534739122723327

Graph of the $Z$-function along the critical line