Properties

Label 2-90354-1.1-c1-0-18
Degree $2$
Conductor $90354$
Sign $-1$
Analytic cond. $721.480$
Root an. cond. $26.8603$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s − 11-s + 12-s + 13-s − 14-s + 16-s + 18-s + 4·19-s − 21-s − 22-s − 6·23-s + 24-s − 5·25-s + 26-s + 27-s − 28-s − 5·31-s + 32-s − 33-s + 36-s + 4·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.235·18-s + 0.917·19-s − 0.218·21-s − 0.213·22-s − 1.25·23-s + 0.204·24-s − 25-s + 0.196·26-s + 0.192·27-s − 0.188·28-s − 0.898·31-s + 0.176·32-s − 0.174·33-s + 1/6·36-s + 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90354 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90354\)    =    \(2 \cdot 3 \cdot 11 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(721.480\)
Root analytic conductor: \(26.8603\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 90354,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 + T \)
37 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.12370638055718, −13.65732584943607, −13.19521926776030, −12.70016803784389, −12.30253050639188, −11.70763317294791, −11.24436434484824, −10.71076602639392, −10.07782486796225, −9.609785424565587, −9.302742169223388, −8.439098461041767, −8.004927574552560, −7.574482179396630, −6.969770608507693, −6.466994963984685, −5.661073200875047, −5.566713543035595, −4.696427646616944, −4.003174293643937, −3.695139736902822, −3.073605785185890, −2.392468799289302, −1.893715698124673, −1.061497858026161, 0, 1.061497858026161, 1.893715698124673, 2.392468799289302, 3.073605785185890, 3.695139736902822, 4.003174293643937, 4.696427646616944, 5.566713543035595, 5.661073200875047, 6.466994963984685, 6.969770608507693, 7.574482179396630, 8.004927574552560, 8.439098461041767, 9.302742169223388, 9.609785424565587, 10.07782486796225, 10.71076602639392, 11.24436434484824, 11.70763317294791, 12.30253050639188, 12.70016803784389, 13.19521926776030, 13.65732584943607, 14.12370638055718

Graph of the $Z$-function along the critical line