Properties

Label 2-8330-1.1-c1-0-81
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s − 2·9-s − 10-s − 2·11-s + 12-s + 5·13-s − 15-s + 16-s + 17-s − 2·18-s + 3·19-s − 20-s − 2·22-s − 2·23-s + 24-s + 25-s + 5·26-s − 5·27-s − 5·29-s − 30-s + 3·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s − 2/3·9-s − 0.316·10-s − 0.603·11-s + 0.288·12-s + 1.38·13-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.471·18-s + 0.688·19-s − 0.223·20-s − 0.426·22-s − 0.417·23-s + 0.204·24-s + 1/5·25-s + 0.980·26-s − 0.962·27-s − 0.928·29-s − 0.182·30-s + 0.538·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.628398445\)
\(L(\frac12)\) \(\approx\) \(3.628398445\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75224010783973914672660495951, −7.24078121909324223452972252976, −6.22014694115145208675356613037, −5.72285015949319826565276029030, −5.05797657522451710283424979289, −4.00930814085351732037120151496, −3.57203019074346732517166482547, −2.84561943520071171619936994705, −2.04669458053518419971780046608, −0.811387849095929839202988539350, 0.811387849095929839202988539350, 2.04669458053518419971780046608, 2.84561943520071171619936994705, 3.57203019074346732517166482547, 4.00930814085351732037120151496, 5.05797657522451710283424979289, 5.72285015949319826565276029030, 6.22014694115145208675356613037, 7.24078121909324223452972252976, 7.75224010783973914672660495951

Graph of the $Z$-function along the critical line