Properties

Label 2-276e2-1.1-c1-0-9
Degree $2$
Conductor $76176$
Sign $1$
Analytic cond. $608.268$
Root an. cond. $24.6630$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·13-s + 2·17-s − 8·19-s − 25-s + 2·29-s + 8·31-s − 2·37-s − 10·41-s + 8·43-s + 8·47-s − 7·49-s + 2·53-s − 4·59-s − 2·61-s − 4·65-s + 8·67-s − 6·73-s + 8·79-s + 16·83-s + 4·85-s + 18·89-s − 16·95-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.554·13-s + 0.485·17-s − 1.83·19-s − 1/5·25-s + 0.371·29-s + 1.43·31-s − 0.328·37-s − 1.56·41-s + 1.21·43-s + 1.16·47-s − 49-s + 0.274·53-s − 0.520·59-s − 0.256·61-s − 0.496·65-s + 0.977·67-s − 0.702·73-s + 0.900·79-s + 1.75·83-s + 0.433·85-s + 1.90·89-s − 1.64·95-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76176\)    =    \(2^{4} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(608.268\)
Root analytic conductor: \(24.6630\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 76176,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.319617169\)
\(L(\frac12)\) \(\approx\) \(2.319617169\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.11105937925899, −13.44002806479497, −13.21672882128114, −12.54328336644026, −12.04499917835798, −11.76194886686988, −10.77140869157999, −10.55325352018327, −10.07902902061456, −9.536457548771704, −9.050876038703058, −8.468503906162457, −7.977150761833070, −7.420488360250268, −6.549663363714895, −6.416310952832961, −5.798505921163257, −5.099694721292941, −4.676759267632037, −3.999966271853978, −3.323799955977657, −2.457586977429502, −2.181666526052666, −1.388952331869960, −0.4923239858664202, 0.4923239858664202, 1.388952331869960, 2.181666526052666, 2.457586977429502, 3.323799955977657, 3.999966271853978, 4.676759267632037, 5.099694721292941, 5.798505921163257, 6.416310952832961, 6.549663363714895, 7.420488360250268, 7.977150761833070, 8.468503906162457, 9.050876038703058, 9.536457548771704, 10.07902902061456, 10.55325352018327, 10.77140869157999, 11.76194886686988, 12.04499917835798, 12.54328336644026, 13.21672882128114, 13.44002806479497, 14.11105937925899

Graph of the $Z$-function along the critical line