Properties

Label 2-703-1.1-c1-0-18
Degree $2$
Conductor $703$
Sign $1$
Analytic cond. $5.61348$
Root an. cond. $2.36927$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 2·4-s − 2·5-s − 7-s + 6·9-s + 3·11-s − 6·12-s + 6·13-s − 6·15-s + 4·16-s + 2·17-s + 19-s + 4·20-s − 3·21-s − 25-s + 9·27-s + 2·28-s + 6·29-s − 4·31-s + 9·33-s + 2·35-s − 12·36-s − 37-s + 18·39-s + 9·41-s + 4·43-s − 6·44-s + ⋯
L(s)  = 1  + 1.73·3-s − 4-s − 0.894·5-s − 0.377·7-s + 2·9-s + 0.904·11-s − 1.73·12-s + 1.66·13-s − 1.54·15-s + 16-s + 0.485·17-s + 0.229·19-s + 0.894·20-s − 0.654·21-s − 1/5·25-s + 1.73·27-s + 0.377·28-s + 1.11·29-s − 0.718·31-s + 1.56·33-s + 0.338·35-s − 2·36-s − 0.164·37-s + 2.88·39-s + 1.40·41-s + 0.609·43-s − 0.904·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 703 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 703 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(703\)    =    \(19 \cdot 37\)
Sign: $1$
Analytic conductor: \(5.61348\)
Root analytic conductor: \(2.36927\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 703,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.053106134\)
\(L(\frac12)\) \(\approx\) \(2.053106134\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad19 \( 1 - T \)
37 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05447016331795076753843124558, −9.322785243387073018175081080931, −8.649334900934084695834907889147, −8.172596918335991860172932097060, −7.32057820339219969391229332885, −6.06731610306162376296883739999, −4.41700371545169852157216919625, −3.73679275260902051694693414558, −3.19093175218016983244031724621, −1.29286312905799335016720966581, 1.29286312905799335016720966581, 3.19093175218016983244031724621, 3.73679275260902051694693414558, 4.41700371545169852157216919625, 6.06731610306162376296883739999, 7.32057820339219969391229332885, 8.172596918335991860172932097060, 8.649334900934084695834907889147, 9.322785243387073018175081080931, 10.05447016331795076753843124558

Graph of the $Z$-function along the critical line