Properties

Label 2-68450-1.1-c1-0-33
Degree $2$
Conductor $68450$
Sign $-1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 4·7-s + 8-s − 2·9-s + 3·11-s − 12-s − 6·13-s + 4·14-s + 16-s − 3·17-s − 2·18-s + 3·19-s − 4·21-s + 3·22-s − 2·23-s − 24-s − 6·26-s + 5·27-s + 4·28-s + 32-s − 3·33-s − 3·34-s − 2·36-s + 3·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 1.51·7-s + 0.353·8-s − 2/3·9-s + 0.904·11-s − 0.288·12-s − 1.66·13-s + 1.06·14-s + 1/4·16-s − 0.727·17-s − 0.471·18-s + 0.688·19-s − 0.872·21-s + 0.639·22-s − 0.417·23-s − 0.204·24-s − 1.17·26-s + 0.962·27-s + 0.755·28-s + 0.176·32-s − 0.522·33-s − 0.514·34-s − 1/3·36-s + 0.486·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35699894777368, −14.13667352693145, −13.54124351049825, −12.84090053178397, −12.14177951413174, −11.86228540204481, −11.67155947247978, −10.98375633239750, −10.68328419408988, −9.949315788208852, −9.318332319038291, −8.811348533933173, −8.063367701538761, −7.753566866681740, −6.936666471229140, −6.732632016914127, −5.793337070548702, −5.429900213142230, −4.948781980991746, −4.414084702107994, −3.989721222841359, −2.978086048329551, −2.430136992320514, −1.782569910008573, −1.038909867614247, 0, 1.038909867614247, 1.782569910008573, 2.430136992320514, 2.978086048329551, 3.989721222841359, 4.414084702107994, 4.948781980991746, 5.429900213142230, 5.793337070548702, 6.732632016914127, 6.936666471229140, 7.753566866681740, 8.063367701538761, 8.811348533933173, 9.318332319038291, 9.949315788208852, 10.68328419408988, 10.98375633239750, 11.67155947247978, 11.86228540204481, 12.14177951413174, 12.84090053178397, 13.54124351049825, 14.13667352693145, 14.35699894777368

Graph of the $Z$-function along the critical line