Properties

Label 2-255e2-1.1-c1-0-65
Degree $2$
Conductor $65025$
Sign $1$
Analytic cond. $519.227$
Root an. cond. $22.7865$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·7-s − 3·11-s − 2·13-s + 4·16-s − 7·19-s − 6·23-s − 4·28-s − 3·29-s − 8·31-s − 4·37-s + 9·41-s − 2·43-s + 6·44-s − 12·47-s − 3·49-s + 4·52-s + 9·59-s + 7·61-s − 8·64-s + 16·67-s − 3·71-s − 16·73-s + 14·76-s − 6·77-s + 79-s − 12·83-s + ⋯
L(s)  = 1  − 4-s + 0.755·7-s − 0.904·11-s − 0.554·13-s + 16-s − 1.60·19-s − 1.25·23-s − 0.755·28-s − 0.557·29-s − 1.43·31-s − 0.657·37-s + 1.40·41-s − 0.304·43-s + 0.904·44-s − 1.75·47-s − 3/7·49-s + 0.554·52-s + 1.17·59-s + 0.896·61-s − 64-s + 1.95·67-s − 0.356·71-s − 1.87·73-s + 1.60·76-s − 0.683·77-s + 0.112·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65025\)    =    \(3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(519.227\)
Root analytic conductor: \(22.7865\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 65025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62216750157495, −14.37829035215679, −13.75872420707518, −13.03664406616606, −12.79710448897968, −12.51765108729439, −11.54287810988024, −11.28868529928722, −10.55972341263788, −10.13148297333893, −9.718094128103992, −9.028281547196278, −8.495049849088326, −8.112081575809470, −7.684835829276868, −7.031513847466037, −6.289749639988953, −5.562769321357825, −5.249742220444892, −4.642735051017204, −4.056302287845489, −3.653175847598728, −2.631587789911877, −2.057794744091466, −1.375522930297209, 0, 0, 1.375522930297209, 2.057794744091466, 2.631587789911877, 3.653175847598728, 4.056302287845489, 4.642735051017204, 5.249742220444892, 5.562769321357825, 6.289749639988953, 7.031513847466037, 7.684835829276868, 8.112081575809470, 8.495049849088326, 9.028281547196278, 9.718094128103992, 10.13148297333893, 10.55972341263788, 11.28868529928722, 11.54287810988024, 12.51765108729439, 12.79710448897968, 13.03664406616606, 13.75872420707518, 14.37829035215679, 14.62216750157495

Graph of the $Z$-function along the critical line