Properties

Label 2-64320-1.1-c1-0-15
Degree $2$
Conductor $64320$
Sign $1$
Analytic cond. $513.597$
Root an. cond. $22.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 4·7-s + 9-s − 4·11-s − 2·13-s + 15-s − 6·17-s − 4·19-s + 4·21-s + 8·23-s + 25-s + 27-s + 6·29-s − 4·31-s − 4·33-s + 4·35-s + 2·37-s − 2·39-s − 2·41-s + 4·43-s + 45-s + 9·49-s − 6·51-s − 10·53-s − 4·55-s − 4·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s − 1.20·11-s − 0.554·13-s + 0.258·15-s − 1.45·17-s − 0.917·19-s + 0.872·21-s + 1.66·23-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 0.718·31-s − 0.696·33-s + 0.676·35-s + 0.328·37-s − 0.320·39-s − 0.312·41-s + 0.609·43-s + 0.149·45-s + 9/7·49-s − 0.840·51-s − 1.37·53-s − 0.539·55-s − 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64320\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 67\)
Sign: $1$
Analytic conductor: \(513.597\)
Root analytic conductor: \(22.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 64320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.328386423\)
\(L(\frac12)\) \(\approx\) \(3.328386423\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
67 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.26833017403816, −13.74625835758329, −13.26311923943748, −12.83851158391535, −12.38918200505978, −11.61243487898515, −11.01168877717769, −10.70069622966503, −10.40771558415602, −9.442285656141925, −9.081949367993550, −8.584689758511675, −7.974857534280277, −7.735518515515077, −6.931441204180363, −6.556161040054305, −5.677290252117554, −5.001824472435673, −4.716595382184146, −4.288636029556158, −3.203707492720792, −2.601364990288021, −2.121345175423030, −1.574131303520337, −0.5693001463052469, 0.5693001463052469, 1.574131303520337, 2.121345175423030, 2.601364990288021, 3.203707492720792, 4.288636029556158, 4.716595382184146, 5.001824472435673, 5.677290252117554, 6.556161040054305, 6.931441204180363, 7.735518515515077, 7.974857534280277, 8.584689758511675, 9.081949367993550, 9.442285656141925, 10.40771558415602, 10.70069622966503, 11.01168877717769, 11.61243487898515, 12.38918200505978, 12.83851158391535, 13.26311923943748, 13.74625835758329, 14.26833017403816

Graph of the $Z$-function along the critical line