Properties

Label 2-5700-1.1-c1-0-44
Degree $2$
Conductor $5700$
Sign $-1$
Analytic cond. $45.5147$
Root an. cond. $6.74646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·7-s + 9-s − 2·11-s + 2·13-s − 4·17-s − 19-s − 3·21-s − 2·23-s − 27-s + 3·29-s + 4·31-s + 2·33-s − 6·37-s − 2·39-s − 11·41-s − 4·43-s + 2·49-s + 4·51-s + 3·53-s + 57-s − 3·59-s − 5·61-s + 3·63-s − 8·67-s + 2·69-s − 13·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.13·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s − 0.970·17-s − 0.229·19-s − 0.654·21-s − 0.417·23-s − 0.192·27-s + 0.557·29-s + 0.718·31-s + 0.348·33-s − 0.986·37-s − 0.320·39-s − 1.71·41-s − 0.609·43-s + 2/7·49-s + 0.560·51-s + 0.412·53-s + 0.132·57-s − 0.390·59-s − 0.640·61-s + 0.377·63-s − 0.977·67-s + 0.240·69-s − 1.54·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(45.5147\)
Root analytic conductor: \(6.74646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 11 T + p T^{2} \) 1.41.l
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87785445937393363604411616526, −6.96151722220605453245089416514, −6.37680918886826301084863870495, −5.52655966757703089958458438184, −4.84752043582415840207020541389, −4.34557041012670436797163913140, −3.28127977144834553319538976878, −2.15029966888136309601118755907, −1.37540112561638479881887754910, 0, 1.37540112561638479881887754910, 2.15029966888136309601118755907, 3.28127977144834553319538976878, 4.34557041012670436797163913140, 4.84752043582415840207020541389, 5.52655966757703089958458438184, 6.37680918886826301084863870495, 6.96151722220605453245089416514, 7.87785445937393363604411616526

Graph of the $Z$-function along the critical line