Properties

Label 2-48552-1.1-c1-0-26
Degree $2$
Conductor $48552$
Sign $-1$
Analytic cond. $387.689$
Root an. cond. $19.6898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 7-s + 9-s − 5·11-s − 4·13-s + 3·15-s + 4·19-s − 21-s + 4·25-s + 27-s + 3·29-s + 7·31-s − 5·33-s − 3·35-s − 4·37-s − 4·39-s − 10·43-s + 3·45-s + 4·47-s + 49-s − 9·53-s − 15·55-s + 4·57-s + 5·59-s + 2·61-s − 63-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 0.377·7-s + 1/3·9-s − 1.50·11-s − 1.10·13-s + 0.774·15-s + 0.917·19-s − 0.218·21-s + 4/5·25-s + 0.192·27-s + 0.557·29-s + 1.25·31-s − 0.870·33-s − 0.507·35-s − 0.657·37-s − 0.640·39-s − 1.52·43-s + 0.447·45-s + 0.583·47-s + 1/7·49-s − 1.23·53-s − 2.02·55-s + 0.529·57-s + 0.650·59-s + 0.256·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48552\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(387.689\)
Root analytic conductor: \(19.6898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 48552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.80206069767582, −14.01983944698805, −13.86485551925049, −13.37291581774781, −12.90235297942253, −12.38953613689016, −11.87463183748894, −11.10213087035273, −10.24898049999557, −10.16059498774244, −9.739362032535684, −9.190664659046894, −8.540509483339096, −7.931065757645688, −7.498851039274917, −6.779234876044064, −6.322820200520438, −5.553706489426541, −5.051137604460053, −4.751753901430521, −3.628783507515055, −2.921423166930493, −2.535829527081634, −1.991974320740382, −1.094073588616244, 0, 1.094073588616244, 1.991974320740382, 2.535829527081634, 2.921423166930493, 3.628783507515055, 4.751753901430521, 5.051137604460053, 5.553706489426541, 6.322820200520438, 6.779234876044064, 7.498851039274917, 7.931065757645688, 8.540509483339096, 9.190664659046894, 9.739362032535684, 10.16059498774244, 10.24898049999557, 11.10213087035273, 11.87463183748894, 12.38953613689016, 12.90235297942253, 13.37291581774781, 13.86485551925049, 14.01983944698805, 14.80206069767582

Graph of the $Z$-function along the critical line