Properties

Label 2-47040-1.1-c1-0-81
Degree $2$
Conductor $47040$
Sign $1$
Analytic cond. $375.616$
Root an. cond. $19.3808$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s − 4·11-s + 7·13-s − 15-s + 6·17-s − 3·19-s + 2·23-s + 25-s + 27-s + 2·29-s + 7·31-s − 4·33-s + 7·37-s + 7·39-s + 8·41-s + 5·43-s − 45-s + 10·47-s + 6·51-s + 8·53-s + 4·55-s − 3·57-s − 10·59-s − 6·61-s − 7·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.20·11-s + 1.94·13-s − 0.258·15-s + 1.45·17-s − 0.688·19-s + 0.417·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 1.25·31-s − 0.696·33-s + 1.15·37-s + 1.12·39-s + 1.24·41-s + 0.762·43-s − 0.149·45-s + 1.45·47-s + 0.840·51-s + 1.09·53-s + 0.539·55-s − 0.397·57-s − 1.30·59-s − 0.768·61-s − 0.868·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47040\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(375.616\)
Root analytic conductor: \(19.3808\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.594910346\)
\(L(\frac12)\) \(\approx\) \(3.594910346\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.49749038518138, −14.10525760843602, −13.55715579290664, −13.05800054349714, −12.69429659726737, −12.07547972827018, −11.45254954464260, −10.87474461444349, −10.43132370002505, −10.07459543061583, −9.145774272969032, −8.811858149415047, −8.178733563300799, −7.799682418349827, −7.397929561028747, −6.530473733117940, −5.852371359215517, −5.618737918000685, −4.448392656506360, −4.283892120359106, −3.363082356488797, −2.958618386364970, −2.307320427535074, −1.215634402896517, −0.7487034569804905, 0.7487034569804905, 1.215634402896517, 2.307320427535074, 2.958618386364970, 3.363082356488797, 4.283892120359106, 4.448392656506360, 5.618737918000685, 5.852371359215517, 6.530473733117940, 7.397929561028747, 7.799682418349827, 8.178733563300799, 8.811858149415047, 9.145774272969032, 10.07459543061583, 10.43132370002505, 10.87474461444349, 11.45254954464260, 12.07547972827018, 12.69429659726737, 13.05800054349714, 13.55715579290664, 14.10525760843602, 14.49749038518138

Graph of the $Z$-function along the critical line