Properties

Label 2-3888-1.1-c1-0-5
Degree $2$
Conductor $3888$
Sign $1$
Analytic cond. $31.0458$
Root an. cond. $5.57187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·7-s + 2·13-s − 8·19-s − 5·25-s + 7·31-s − 37-s + 13·43-s + 18·49-s − 61-s − 5·67-s − 7·73-s + 4·79-s − 10·91-s + 14·97-s + 13·103-s + 17·109-s + ⋯
L(s)  = 1  − 1.88·7-s + 0.554·13-s − 1.83·19-s − 25-s + 1.25·31-s − 0.164·37-s + 1.98·43-s + 18/7·49-s − 0.128·61-s − 0.610·67-s − 0.819·73-s + 0.450·79-s − 1.04·91-s + 1.42·97-s + 1.28·103-s + 1.62·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3888\)    =    \(2^{4} \cdot 3^{5}\)
Sign: $1$
Analytic conductor: \(31.0458\)
Root analytic conductor: \(5.57187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3888,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.060810880\)
\(L(\frac12)\) \(\approx\) \(1.060810880\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 13 T + p T^{2} \) 1.43.an
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.651035333995681317080070810460, −7.70203378606080007864041810394, −6.85869920998694804771072772744, −6.14264118212333135885925672066, −5.91910758825818844146409607562, −4.48185997599379011166802508586, −3.84056353467085125832194834909, −3.00558512009287535497097773694, −2.14407033478337402696046561651, −0.56552617859346549953557177563, 0.56552617859346549953557177563, 2.14407033478337402696046561651, 3.00558512009287535497097773694, 3.84056353467085125832194834909, 4.48185997599379011166802508586, 5.91910758825818844146409607562, 6.14264118212333135885925672066, 6.85869920998694804771072772744, 7.70203378606080007864041810394, 8.651035333995681317080070810460

Graph of the $Z$-function along the critical line