Properties

Label 2-388416-1.1-c1-0-113
Degree $2$
Conductor $388416$
Sign $1$
Analytic cond. $3101.51$
Root an. cond. $55.6912$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 7-s + 9-s − 3·11-s − 2·13-s + 3·15-s + 2·19-s − 21-s + 4·23-s + 4·25-s + 27-s + 3·29-s + 3·31-s − 3·33-s − 3·35-s + 6·37-s − 2·39-s + 4·41-s − 10·43-s + 3·45-s + 8·47-s + 49-s + 5·53-s − 9·55-s + 2·57-s + 13·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 0.377·7-s + 1/3·9-s − 0.904·11-s − 0.554·13-s + 0.774·15-s + 0.458·19-s − 0.218·21-s + 0.834·23-s + 4/5·25-s + 0.192·27-s + 0.557·29-s + 0.538·31-s − 0.522·33-s − 0.507·35-s + 0.986·37-s − 0.320·39-s + 0.624·41-s − 1.52·43-s + 0.447·45-s + 1.16·47-s + 1/7·49-s + 0.686·53-s − 1.21·55-s + 0.264·57-s + 1.69·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388416\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(3101.51\)
Root analytic conductor: \(55.6912\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388416,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.477634777\)
\(L(\frac12)\) \(\approx\) \(5.477634777\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71331782697782, −12.03438076489790, −11.62741140839018, −10.99287609253241, −10.38336876951082, −10.20492231614422, −9.724784963053064, −9.405117115277924, −8.899856558312835, −8.435102297123779, −7.932457169905173, −7.374473739892421, −6.992519920559755, −6.448500059731789, −5.957128391901668, −5.493989465673812, −4.973088209876514, −4.655085842398512, −3.856526452698765, −3.230970050899786, −2.788238472686703, −2.256181531755715, −2.024758494915904, −1.028071283505581, −0.6337679285471626, 0.6337679285471626, 1.028071283505581, 2.024758494915904, 2.256181531755715, 2.788238472686703, 3.230970050899786, 3.856526452698765, 4.655085842398512, 4.973088209876514, 5.493989465673812, 5.957128391901668, 6.448500059731789, 6.992519920559755, 7.374473739892421, 7.932457169905173, 8.435102297123779, 8.899856558312835, 9.405117115277924, 9.724784963053064, 10.20492231614422, 10.38336876951082, 10.99287609253241, 11.62741140839018, 12.03438076489790, 12.71331782697782

Graph of the $Z$-function along the critical line