Properties

Label 2-32448-1.1-c1-0-52
Degree $2$
Conductor $32448$
Sign $-1$
Analytic cond. $259.098$
Root an. cond. $16.0965$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s − 6·17-s + 2·19-s + 2·21-s − 5·25-s − 27-s + 6·29-s − 2·31-s + 2·37-s + 12·41-s + 4·43-s − 3·49-s + 6·51-s − 6·53-s − 2·57-s + 12·59-s − 2·61-s − 2·63-s − 10·67-s − 12·71-s − 14·73-s + 5·75-s + 8·79-s + 81-s + 12·83-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s − 1.45·17-s + 0.458·19-s + 0.436·21-s − 25-s − 0.192·27-s + 1.11·29-s − 0.359·31-s + 0.328·37-s + 1.87·41-s + 0.609·43-s − 3/7·49-s + 0.840·51-s − 0.824·53-s − 0.264·57-s + 1.56·59-s − 0.256·61-s − 0.251·63-s − 1.22·67-s − 1.42·71-s − 1.63·73-s + 0.577·75-s + 0.900·79-s + 1/9·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32448\)    =    \(2^{6} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(259.098\)
Root analytic conductor: \(16.0965\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 32448,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.53241286433757, −14.76760087670818, −14.27607667710180, −13.53402123600131, −13.18890249668717, −12.73620778396827, −12.04529886369554, −11.65813125246614, −11.02473922068182, −10.57550780401249, −9.980755572945561, −9.347923538124627, −9.046729460875612, −8.219980492982182, −7.574796827886111, −7.027594636933914, −6.378416332215352, −6.012066253732343, −5.386197206648730, −4.452950397001930, −4.247158378229496, −3.283653590232801, −2.624402518472954, −1.856836738129533, −0.8396564314423784, 0, 0.8396564314423784, 1.856836738129533, 2.624402518472954, 3.283653590232801, 4.247158378229496, 4.452950397001930, 5.386197206648730, 6.012066253732343, 6.378416332215352, 7.027594636933914, 7.574796827886111, 8.219980492982182, 9.046729460875612, 9.347923538124627, 9.980755572945561, 10.57550780401249, 11.02473922068182, 11.65813125246614, 12.04529886369554, 12.73620778396827, 13.18890249668717, 13.53402123600131, 14.27607667710180, 14.76760087670818, 15.53241286433757

Graph of the $Z$-function along the critical line