Properties

Label 2-321600-1.1-c1-0-174
Degree $2$
Conductor $321600$
Sign $1$
Analytic cond. $2567.98$
Root an. cond. $50.6753$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s + 9-s + 4·11-s + 2·13-s + 6·17-s + 4·19-s + 4·21-s + 8·23-s + 27-s + 6·29-s + 4·31-s + 4·33-s − 2·37-s + 2·39-s − 2·41-s + 4·43-s + 9·49-s + 6·51-s + 10·53-s + 4·57-s − 10·61-s + 4·63-s − 67-s + 8·69-s − 10·73-s + 16·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 1.45·17-s + 0.917·19-s + 0.872·21-s + 1.66·23-s + 0.192·27-s + 1.11·29-s + 0.718·31-s + 0.696·33-s − 0.328·37-s + 0.320·39-s − 0.312·41-s + 0.609·43-s + 9/7·49-s + 0.840·51-s + 1.37·53-s + 0.529·57-s − 1.28·61-s + 0.503·63-s − 0.122·67-s + 0.963·69-s − 1.17·73-s + 1.82·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 321600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 321600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(321600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 67\)
Sign: $1$
Analytic conductor: \(2567.98\)
Root analytic conductor: \(50.6753\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 321600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.493995460\)
\(L(\frac12)\) \(\approx\) \(8.493995460\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
67 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.42726311841696, −12.08371870738074, −11.78667897697876, −11.35057857950995, −10.73467974591219, −10.46897019514103, −9.793720300228265, −9.372649384149462, −8.807632611202706, −8.583862384835095, −8.000909354906902, −7.653509368751405, −7.071944416165116, −6.760882636914336, −5.967680019503004, −5.530989808645341, −4.973417763100980, −4.543764476234493, −4.037807183580410, −3.393107524691512, −3.007167415028304, −2.383809958165284, −1.432224771031528, −1.272490942962727, −0.8569327167465351, 0.8569327167465351, 1.272490942962727, 1.432224771031528, 2.383809958165284, 3.007167415028304, 3.393107524691512, 4.037807183580410, 4.543764476234493, 4.973417763100980, 5.530989808645341, 5.967680019503004, 6.760882636914336, 7.071944416165116, 7.653509368751405, 8.000909354906902, 8.583862384835095, 8.807632611202706, 9.372649384149462, 9.793720300228265, 10.46897019514103, 10.73467974591219, 11.35057857950995, 11.78667897697876, 12.08371870738074, 12.42726311841696

Graph of the $Z$-function along the critical line