Properties

Label 2-296208-1.1-c1-0-11
Degree $2$
Conductor $296208$
Sign $1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s − 6·13-s − 17-s + 4·19-s − 25-s + 2·29-s − 8·35-s − 10·37-s − 10·41-s − 4·43-s + 4·47-s + 9·49-s + 2·53-s − 2·61-s + 12·65-s − 12·67-s + 10·73-s + 4·79-s + 12·83-s + 2·85-s + 14·89-s − 24·91-s − 8·95-s + 18·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s − 1.66·13-s − 0.242·17-s + 0.917·19-s − 1/5·25-s + 0.371·29-s − 1.35·35-s − 1.64·37-s − 1.56·41-s − 0.609·43-s + 0.583·47-s + 9/7·49-s + 0.274·53-s − 0.256·61-s + 1.48·65-s − 1.46·67-s + 1.17·73-s + 0.450·79-s + 1.31·83-s + 0.216·85-s + 1.48·89-s − 2.51·91-s − 0.820·95-s + 1.82·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.008313185\)
\(L(\frac12)\) \(\approx\) \(1.008313185\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.34197156444288, −12.15337126943967, −11.72916955653573, −11.62258816166728, −10.86332534636949, −10.40611297876013, −10.15484212240792, −9.309322084820793, −9.080919647790750, −8.354676528592160, −7.974924226093031, −7.709101903084944, −7.136699067711249, −6.873078496358607, −6.096825957942310, −5.252205490941551, −4.999419522136449, −4.820404219391345, −4.015494604956163, −3.616926883613682, −2.939373058858602, −2.282063658345393, −1.785098326111261, −1.161230215204404, −0.2746059993122686, 0.2746059993122686, 1.161230215204404, 1.785098326111261, 2.282063658345393, 2.939373058858602, 3.616926883613682, 4.015494604956163, 4.820404219391345, 4.999419522136449, 5.252205490941551, 6.096825957942310, 6.873078496358607, 7.136699067711249, 7.709101903084944, 7.974924226093031, 8.354676528592160, 9.080919647790750, 9.309322084820793, 10.15484212240792, 10.40611297876013, 10.86332534636949, 11.62258816166728, 11.72916955653573, 12.15337126943967, 12.34197156444288

Graph of the $Z$-function along the critical line