Properties

Label 2-291312-1.1-c1-0-54
Degree $2$
Conductor $291312$
Sign $1$
Analytic cond. $2326.13$
Root an. cond. $48.2300$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 11-s − 3·13-s + 2·19-s + 4·23-s − 4·25-s + 2·31-s + 35-s + 7·37-s + 11·43-s + 10·47-s + 49-s + 9·53-s − 55-s − 4·59-s − 4·61-s + 3·65-s + 13·67-s − 8·71-s + 73-s − 77-s − 79-s − 9·83-s + 3·89-s + 3·91-s − 2·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.301·11-s − 0.832·13-s + 0.458·19-s + 0.834·23-s − 4/5·25-s + 0.359·31-s + 0.169·35-s + 1.15·37-s + 1.67·43-s + 1.45·47-s + 1/7·49-s + 1.23·53-s − 0.134·55-s − 0.520·59-s − 0.512·61-s + 0.372·65-s + 1.58·67-s − 0.949·71-s + 0.117·73-s − 0.113·77-s − 0.112·79-s − 0.987·83-s + 0.317·89-s + 0.314·91-s − 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(291312\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2326.13\)
Root analytic conductor: \(48.2300\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 291312,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.494166411\)
\(L(\frac12)\) \(\approx\) \(2.494166411\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.76816090363163, −12.22162676512536, −11.81161674221970, −11.41522359336867, −10.93065177406158, −10.41622086328272, −9.894413647576456, −9.514573197687488, −9.050611797731303, −8.645323194756203, −7.942802386892922, −7.531734933387968, −7.204558175126520, −6.716132184709804, −5.994991501905049, −5.711528424037143, −5.101492311321991, −4.415014160291208, −4.147581608268130, −3.540465536400285, −2.842753166226157, −2.530835067301171, −1.802488541671634, −0.9017571062240594, −0.5272872726980677, 0.5272872726980677, 0.9017571062240594, 1.802488541671634, 2.530835067301171, 2.842753166226157, 3.540465536400285, 4.147581608268130, 4.415014160291208, 5.101492311321991, 5.711528424037143, 5.994991501905049, 6.716132184709804, 7.204558175126520, 7.531734933387968, 7.942802386892922, 8.645323194756203, 9.050611797731303, 9.514573197687488, 9.894413647576456, 10.41622086328272, 10.93065177406158, 11.41522359336867, 11.81161674221970, 12.22162676512536, 12.76816090363163

Graph of the $Z$-function along the critical line