Properties

Label 2-29120-1.1-c1-0-43
Degree $2$
Conductor $29120$
Sign $-1$
Analytic cond. $232.524$
Root an. cond. $15.2487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 7-s − 2·9-s − 3·11-s − 13-s + 15-s − 6·17-s + 2·19-s − 21-s + 3·23-s + 25-s − 5·27-s + 6·29-s + 7·31-s − 3·33-s − 35-s − 5·37-s − 39-s + 9·41-s + 2·43-s − 2·45-s + 9·47-s + 49-s − 6·51-s − 3·55-s + 2·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.904·11-s − 0.277·13-s + 0.258·15-s − 1.45·17-s + 0.458·19-s − 0.218·21-s + 0.625·23-s + 1/5·25-s − 0.962·27-s + 1.11·29-s + 1.25·31-s − 0.522·33-s − 0.169·35-s − 0.821·37-s − 0.160·39-s + 1.40·41-s + 0.304·43-s − 0.298·45-s + 1.31·47-s + 1/7·49-s − 0.840·51-s − 0.404·55-s + 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29120\)    =    \(2^{6} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(232.524\)
Root analytic conductor: \(15.2487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 29120,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.49010395884248, −14.79748409039874, −14.42011789724977, −13.73108052585294, −13.32873416968377, −13.11203038976392, −12.16726411219123, −11.83952723242012, −11.03413500599177, −10.52881228527108, −10.11303581930614, −9.318009405164474, −8.912098073622320, −8.507573017527818, −7.760819138121431, −7.237803798608871, −6.540103860875090, −5.971655600792869, −5.353255407564357, −4.686271930450598, −4.067263772424243, −3.031902083969156, −2.683220178383304, −2.198118297246852, −1.013413972586316, 0, 1.013413972586316, 2.198118297246852, 2.683220178383304, 3.031902083969156, 4.067263772424243, 4.686271930450598, 5.353255407564357, 5.971655600792869, 6.540103860875090, 7.237803798608871, 7.760819138121431, 8.507573017527818, 8.912098073622320, 9.318009405164474, 10.11303581930614, 10.52881228527108, 11.03413500599177, 11.83952723242012, 12.16726411219123, 13.11203038976392, 13.32873416968377, 13.73108052585294, 14.42011789724977, 14.79748409039874, 15.49010395884248

Graph of the $Z$-function along the critical line