Properties

Label 2-244608-1.1-c1-0-27
Degree $2$
Conductor $244608$
Sign $1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 13-s + 2·15-s + 2·17-s + 6·19-s + 8·23-s − 25-s − 27-s + 4·29-s + 4·31-s + 6·37-s − 39-s − 8·43-s − 2·45-s − 2·51-s − 6·57-s + 8·59-s + 10·61-s − 2·65-s − 14·67-s − 8·69-s + 8·71-s + 2·73-s + 75-s − 14·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.277·13-s + 0.516·15-s + 0.485·17-s + 1.37·19-s + 1.66·23-s − 1/5·25-s − 0.192·27-s + 0.742·29-s + 0.718·31-s + 0.986·37-s − 0.160·39-s − 1.21·43-s − 0.298·45-s − 0.280·51-s − 0.794·57-s + 1.04·59-s + 1.28·61-s − 0.248·65-s − 1.71·67-s − 0.963·69-s + 0.949·71-s + 0.234·73-s + 0.115·75-s − 1.57·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.824813514\)
\(L(\frac12)\) \(\approx\) \(1.824813514\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93339641317492, −12.24818406039849, −11.79416978217478, −11.59122306195300, −11.18861269027482, −10.64579111855606, −9.994889334745492, −9.842807693914465, −9.078612658351469, −8.688191875751036, −8.018483322529016, −7.729623062971465, −7.209806742680057, −6.682988122210186, −6.330295327575645, −5.510988845533735, −5.196724874741468, −4.760383847235934, −3.999530382075832, −3.731343746296796, −2.878910649825344, −2.720043194147084, −1.463313112659725, −1.091730079559299, −0.4529627045689718, 0.4529627045689718, 1.091730079559299, 1.463313112659725, 2.720043194147084, 2.878910649825344, 3.731343746296796, 3.999530382075832, 4.760383847235934, 5.196724874741468, 5.510988845533735, 6.330295327575645, 6.682988122210186, 7.209806742680057, 7.729623062971465, 8.018483322529016, 8.688191875751036, 9.078612658351469, 9.842807693914465, 9.994889334745492, 10.64579111855606, 11.18861269027482, 11.59122306195300, 11.79416978217478, 12.24818406039849, 12.93339641317492

Graph of the $Z$-function along the critical line