Properties

Label 2-244608-1.1-c1-0-38
Degree $2$
Conductor $244608$
Sign $1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s − 13-s + 2·15-s + 2·17-s − 6·19-s + 8·23-s − 25-s + 27-s − 4·29-s + 4·31-s − 6·37-s − 39-s + 8·43-s + 2·45-s + 2·51-s − 6·57-s − 8·59-s − 10·61-s − 2·65-s + 14·67-s + 8·69-s + 8·71-s + 2·73-s − 75-s − 14·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.277·13-s + 0.516·15-s + 0.485·17-s − 1.37·19-s + 1.66·23-s − 1/5·25-s + 0.192·27-s − 0.742·29-s + 0.718·31-s − 0.986·37-s − 0.160·39-s + 1.21·43-s + 0.298·45-s + 0.280·51-s − 0.794·57-s − 1.04·59-s − 1.28·61-s − 0.248·65-s + 1.71·67-s + 0.963·69-s + 0.949·71-s + 0.234·73-s − 0.115·75-s − 1.57·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.871014031\)
\(L(\frac12)\) \(\approx\) \(3.871014031\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98774072099689, −12.61413213600581, −12.04718487625880, −11.42823617852452, −10.92125983146220, −10.45205551791337, −10.14835194978194, −9.415817759288430, −9.278989616312781, −8.725502041739071, −8.274073091300645, −7.661543425021379, −7.264141735728030, −6.613197295526763, −6.331056883424064, −5.579900886280902, −5.302602919596230, −4.545526295558508, −4.202552697007329, −3.400517809205528, −2.981230137599111, −2.336145669548294, −1.902605567451456, −1.296787830696431, −0.5068026819100819, 0.5068026819100819, 1.296787830696431, 1.902605567451456, 2.336145669548294, 2.981230137599111, 3.400517809205528, 4.202552697007329, 4.545526295558508, 5.302602919596230, 5.579900886280902, 6.331056883424064, 6.613197295526763, 7.264141735728030, 7.661543425021379, 8.274073091300645, 8.725502041739071, 9.278989616312781, 9.415817759288430, 10.14835194978194, 10.45205551791337, 10.92125983146220, 11.42823617852452, 12.04718487625880, 12.61413213600581, 12.98774072099689

Graph of the $Z$-function along the critical line