Properties

Label 2-244608-1.1-c1-0-69
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 3·11-s + 13-s + 15-s + 8·17-s + 2·19-s − 6·23-s − 4·25-s − 27-s + 29-s − 31-s + 3·33-s + 2·37-s − 39-s + 10·41-s − 45-s − 2·47-s − 8·51-s − 3·53-s + 3·55-s − 2·57-s − 9·59-s + 2·61-s − 65-s − 10·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.904·11-s + 0.277·13-s + 0.258·15-s + 1.94·17-s + 0.458·19-s − 1.25·23-s − 4/5·25-s − 0.192·27-s + 0.185·29-s − 0.179·31-s + 0.522·33-s + 0.328·37-s − 0.160·39-s + 1.56·41-s − 0.149·45-s − 0.291·47-s − 1.12·51-s − 0.412·53-s + 0.404·55-s − 0.264·57-s − 1.17·59-s + 0.256·61-s − 0.124·65-s − 1.22·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03548724552256, −12.53135641883159, −12.15647586760833, −11.63183961643525, −11.50320648942282, −10.66842767879820, −10.35752574833522, −10.01811654673638, −9.451164611006211, −8.999514180740171, −8.130281772983803, −7.899803359619519, −7.535626033480573, −7.142367282432381, −6.178152775033347, −5.876584141409993, −5.639423146555562, −4.884876520589548, −4.444131758016152, −3.852224936497650, −3.278592701428374, −2.847561541650256, −2.006628241795327, −1.386644964297871, −0.7008525878526418, 0, 0.7008525878526418, 1.386644964297871, 2.006628241795327, 2.847561541650256, 3.278592701428374, 3.852224936497650, 4.444131758016152, 4.884876520589548, 5.639423146555562, 5.876584141409993, 6.178152775033347, 7.142367282432381, 7.535626033480573, 7.899803359619519, 8.130281772983803, 8.999514180740171, 9.451164611006211, 10.01811654673638, 10.35752574833522, 10.66842767879820, 11.50320648942282, 11.63183961643525, 12.15647586760833, 12.53135641883159, 13.03548724552256

Graph of the $Z$-function along the critical line