Properties

Label 2-22491-1.1-c1-0-3
Degree $2$
Conductor $22491$
Sign $1$
Analytic cond. $179.591$
Root an. cond. $13.4011$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·13-s + 4·16-s − 17-s − 2·19-s − 9·23-s − 5·25-s + 9·29-s − 5·31-s + 2·37-s − 43-s − 9·47-s − 8·52-s + 9·59-s + 61-s − 8·64-s + 5·67-s + 2·68-s + 9·71-s + 7·73-s + 4·76-s − 10·79-s − 9·89-s + 18·92-s + 97-s + 10·100-s + 101-s + ⋯
L(s)  = 1  − 4-s + 1.10·13-s + 16-s − 0.242·17-s − 0.458·19-s − 1.87·23-s − 25-s + 1.67·29-s − 0.898·31-s + 0.328·37-s − 0.152·43-s − 1.31·47-s − 1.10·52-s + 1.17·59-s + 0.128·61-s − 64-s + 0.610·67-s + 0.242·68-s + 1.06·71-s + 0.819·73-s + 0.458·76-s − 1.12·79-s − 0.953·89-s + 1.87·92-s + 0.101·97-s + 100-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22491 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22491 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22491\)    =    \(3^{3} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(179.591\)
Root analytic conductor: \(13.4011\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 22491,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.160658565\)
\(L(\frac12)\) \(\approx\) \(1.160658565\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.70334439434521, −14.81888111487961, −14.34021056817549, −13.81426783207422, −13.47377734071485, −12.85774790722559, −12.33998026730250, −11.73888927350380, −11.11991798151383, −10.49456898709483, −9.810079878071586, −9.615062916864407, −8.653239960076703, −8.289496604503061, −7.986300978405577, −6.985155263905476, −6.277250902682972, −5.820223812737499, −5.144703446083190, −4.323188308050148, −3.938008174073500, −3.317476207745994, −2.260154188607823, −1.460395707393147, −0.4552846891636460, 0.4552846891636460, 1.460395707393147, 2.260154188607823, 3.317476207745994, 3.938008174073500, 4.323188308050148, 5.144703446083190, 5.820223812737499, 6.277250902682972, 6.985155263905476, 7.986300978405577, 8.289496604503061, 8.653239960076703, 9.615062916864407, 9.810079878071586, 10.49456898709483, 11.11991798151383, 11.73888927350380, 12.33998026730250, 12.85774790722559, 13.47377734071485, 13.81426783207422, 14.34021056817549, 14.81888111487961, 15.70334439434521

Graph of the $Z$-function along the critical line