Properties

Label 2-198744-1.1-c1-0-8
Degree $2$
Conductor $198744$
Sign $1$
Analytic cond. $1586.97$
Root an. cond. $39.8369$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 9-s − 6·11-s − 3·15-s + 8·17-s − 19-s + 23-s + 4·25-s + 27-s − 5·29-s + 3·31-s − 6·33-s − 12·37-s + 10·41-s − 11·43-s − 3·45-s − 3·47-s + 8·51-s − 53-s + 18·55-s − 57-s − 8·59-s − 2·61-s − 2·67-s + 69-s − 8·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 1/3·9-s − 1.80·11-s − 0.774·15-s + 1.94·17-s − 0.229·19-s + 0.208·23-s + 4/5·25-s + 0.192·27-s − 0.928·29-s + 0.538·31-s − 1.04·33-s − 1.97·37-s + 1.56·41-s − 1.67·43-s − 0.447·45-s − 0.437·47-s + 1.12·51-s − 0.137·53-s + 2.42·55-s − 0.132·57-s − 1.04·59-s − 0.256·61-s − 0.244·67-s + 0.120·69-s − 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198744\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1586.97\)
Root analytic conductor: \(39.8369\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 198744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7023085152\)
\(L(\frac12)\) \(\approx\) \(0.7023085152\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08480161871088, −12.46454116598339, −12.22453290870658, −11.82608329847170, −11.08899907530249, −10.70403003312443, −10.34962647000010, −9.746644819236559, −9.355521004747682, −8.525415629827870, −8.245914370500346, −7.759196163023854, −7.593428859686127, −7.071784941543520, −6.386230435122078, −5.572493062073273, −5.250260288990437, −4.731233192243826, −4.083699761877737, −3.391931475807767, −3.265580060102591, −2.626338968642782, −1.874835668734119, −1.137749246443271, −0.2407905218302523, 0.2407905218302523, 1.137749246443271, 1.874835668734119, 2.626338968642782, 3.265580060102591, 3.391931475807767, 4.083699761877737, 4.731233192243826, 5.250260288990437, 5.572493062073273, 6.386230435122078, 7.071784941543520, 7.593428859686127, 7.759196163023854, 8.245914370500346, 8.525415629827870, 9.355521004747682, 9.746644819236559, 10.34962647000010, 10.70403003312443, 11.08899907530249, 11.82608329847170, 12.22453290870658, 12.46454116598339, 13.08480161871088

Graph of the $Z$-function along the critical line