Properties

Label 2-440e2-1.1-c1-0-207
Degree $2$
Conductor $193600$
Sign $-1$
Analytic cond. $1545.90$
Root an. cond. $39.3179$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s + 4·13-s − 6·17-s − 2·19-s + 2·21-s − 3·23-s − 4·27-s + 6·29-s + 7·31-s − 4·37-s + 8·39-s − 9·41-s − 4·43-s + 9·47-s − 6·49-s − 12·51-s − 4·57-s + 6·59-s − 10·61-s + 63-s + 10·67-s − 6·69-s + 11·73-s + 8·79-s − 11·81-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s + 1.10·13-s − 1.45·17-s − 0.458·19-s + 0.436·21-s − 0.625·23-s − 0.769·27-s + 1.11·29-s + 1.25·31-s − 0.657·37-s + 1.28·39-s − 1.40·41-s − 0.609·43-s + 1.31·47-s − 6/7·49-s − 1.68·51-s − 0.529·57-s + 0.781·59-s − 1.28·61-s + 0.125·63-s + 1.22·67-s − 0.722·69-s + 1.28·73-s + 0.900·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193600\)    =    \(2^{6} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1545.90\)
Root analytic conductor: \(39.3179\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 193600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.58900452135851, −13.09602306511559, −12.26571860282502, −12.09685509246297, −11.29842407295075, −11.07222307609668, −10.40460799510374, −10.10628867783152, −9.270820785458116, −9.079917159797013, −8.422703191938192, −8.159825123083247, −8.002018841611112, −6.967531519918451, −6.640492167772100, −6.239644624324071, −5.517763730899923, −4.841083177854394, −4.416343313566330, −3.757470228970751, −3.431129718466217, −2.669803373265104, −2.215940125255978, −1.715188025762015, −0.9417947421822164, 0, 0.9417947421822164, 1.715188025762015, 2.215940125255978, 2.669803373265104, 3.431129718466217, 3.757470228970751, 4.416343313566330, 4.841083177854394, 5.517763730899923, 6.239644624324071, 6.640492167772100, 6.967531519918451, 8.002018841611112, 8.159825123083247, 8.422703191938192, 9.079917159797013, 9.270820785458116, 10.10628867783152, 10.40460799510374, 11.07222307609668, 11.29842407295075, 12.09685509246297, 12.26571860282502, 13.09602306511559, 13.58900452135851

Graph of the $Z$-function along the critical line