Properties

Label 2-17136-1.1-c1-0-13
Degree $2$
Conductor $17136$
Sign $1$
Analytic cond. $136.831$
Root an. cond. $11.6975$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 5·11-s − 13-s + 17-s + 6·19-s + 6·23-s − 4·25-s − 6·29-s − 4·31-s + 35-s + 11·37-s + 9·43-s + 4·47-s + 49-s + 7·53-s − 5·55-s + 12·59-s + 6·61-s + 65-s − 13·67-s + 4·71-s − 13·73-s − 5·77-s − 15·79-s + 13·83-s − 85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 1.50·11-s − 0.277·13-s + 0.242·17-s + 1.37·19-s + 1.25·23-s − 4/5·25-s − 1.11·29-s − 0.718·31-s + 0.169·35-s + 1.80·37-s + 1.37·43-s + 0.583·47-s + 1/7·49-s + 0.961·53-s − 0.674·55-s + 1.56·59-s + 0.768·61-s + 0.124·65-s − 1.58·67-s + 0.474·71-s − 1.52·73-s − 0.569·77-s − 1.68·79-s + 1.42·83-s − 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17136\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(136.831\)
Root analytic conductor: \(11.6975\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17136,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.256499336\)
\(L(\frac12)\) \(\approx\) \(2.256499336\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 15 T + p T^{2} \) 1.79.p
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.05979315629819, −15.20395478742646, −14.69906034448138, −14.45392214626381, −13.55094172682949, −13.21290316006802, −12.42641449621318, −11.98253433499736, −11.32062203784890, −11.16431183925421, −10.09798967323697, −9.550062224504322, −9.181657898665781, −8.600326372617793, −7.599117101976216, −7.320054575173864, −6.747901410446061, −5.763555229628079, −5.554041615702348, −4.384944685624263, −3.966342413478203, −3.285494458505112, −2.520648726179307, −1.413302833807636, −0.6972433810103567, 0.6972433810103567, 1.413302833807636, 2.520648726179307, 3.285494458505112, 3.966342413478203, 4.384944685624263, 5.554041615702348, 5.763555229628079, 6.747901410446061, 7.320054575173864, 7.599117101976216, 8.600326372617793, 9.181657898665781, 9.550062224504322, 10.09798967323697, 11.16431183925421, 11.32062203784890, 11.98253433499736, 12.42641449621318, 13.21290316006802, 13.55094172682949, 14.45392214626381, 14.69906034448138, 15.20395478742646, 16.05979315629819

Graph of the $Z$-function along the critical line