Properties

Label 2-165165-1.1-c1-0-58
Degree $2$
Conductor $165165$
Sign $-1$
Analytic cond. $1318.84$
Root an. cond. $36.3159$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s + 5-s − 2·6-s + 7-s + 9-s − 2·10-s + 2·12-s − 13-s − 2·14-s + 15-s − 4·16-s + 4·17-s − 2·18-s + 19-s + 2·20-s + 21-s + 4·23-s + 25-s + 2·26-s + 27-s + 2·28-s − 3·29-s − 2·30-s + 9·31-s + 8·32-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s + 0.447·5-s − 0.816·6-s + 0.377·7-s + 1/3·9-s − 0.632·10-s + 0.577·12-s − 0.277·13-s − 0.534·14-s + 0.258·15-s − 16-s + 0.970·17-s − 0.471·18-s + 0.229·19-s + 0.447·20-s + 0.218·21-s + 0.834·23-s + 1/5·25-s + 0.392·26-s + 0.192·27-s + 0.377·28-s − 0.557·29-s − 0.365·30-s + 1.61·31-s + 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165165 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165165\)    =    \(3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1318.84\)
Root analytic conductor: \(36.3159\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 165165,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 17 T + p T^{2} \) 1.89.r
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53276007220160, −13.18285357792860, −12.31565048045826, −12.07087237087984, −11.44337957589306, −10.91970448212398, −10.35437097664531, −10.07799038739231, −9.676320836574101, −9.077941490891189, −8.805950704369538, −8.139806402164505, −7.992195530762404, −7.226559424310891, −7.005039192530364, −6.383892031208011, −5.625467711064967, −5.083667065621857, −4.600007882084889, −3.883591244461703, −3.106349189124683, −2.704145372150283, −1.923171837536497, −1.435868872597221, −0.9395551657537346, 0, 0.9395551657537346, 1.435868872597221, 1.923171837536497, 2.704145372150283, 3.106349189124683, 3.883591244461703, 4.600007882084889, 5.083667065621857, 5.625467711064967, 6.383892031208011, 7.005039192530364, 7.226559424310891, 7.992195530762404, 8.139806402164505, 8.805950704369538, 9.077941490891189, 9.676320836574101, 10.07799038739231, 10.35437097664531, 10.91970448212398, 11.44337957589306, 12.07087237087984, 12.31565048045826, 13.18285357792860, 13.53276007220160

Graph of the $Z$-function along the critical line