Properties

Label 2-162624-1.1-c1-0-2
Degree $2$
Conductor $162624$
Sign $1$
Analytic cond. $1298.55$
Root an. cond. $36.0355$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s − 4·13-s − 15-s − 5·17-s + 6·19-s + 21-s − 4·25-s − 27-s − 10·29-s − 2·31-s − 35-s + 2·37-s + 4·39-s + 2·41-s − 13·43-s + 45-s + 47-s + 49-s + 5·51-s − 4·53-s − 6·57-s + 3·59-s + 8·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.10·13-s − 0.258·15-s − 1.21·17-s + 1.37·19-s + 0.218·21-s − 4/5·25-s − 0.192·27-s − 1.85·29-s − 0.359·31-s − 0.169·35-s + 0.328·37-s + 0.640·39-s + 0.312·41-s − 1.98·43-s + 0.149·45-s + 0.145·47-s + 1/7·49-s + 0.700·51-s − 0.549·53-s − 0.794·57-s + 0.390·59-s + 1.02·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162624\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1298.55\)
Root analytic conductor: \(36.0355\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2194582397\)
\(L(\frac12)\) \(\approx\) \(0.2194582397\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 13 T + p T^{2} \) 1.43.n
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20854365633895, −12.92913104447428, −12.24644938459775, −11.80235331798150, −11.36277493082973, −11.05277961249685, −10.29633946574716, −9.847566281104653, −9.575832755371657, −9.137116663499195, −8.493673224984820, −7.811026246945038, −7.233828214732090, −7.061994318213204, −6.357147070912825, −5.812200687691516, −5.413847519016336, −4.917794169795378, −4.349972367455269, −3.691427734196304, −3.147048156412044, −2.355885284016042, −1.920882773903989, −1.212735676355556, −0.1414214491357019, 0.1414214491357019, 1.212735676355556, 1.920882773903989, 2.355885284016042, 3.147048156412044, 3.691427734196304, 4.349972367455269, 4.917794169795378, 5.413847519016336, 5.812200687691516, 6.357147070912825, 7.061994318213204, 7.233828214732090, 7.811026246945038, 8.493673224984820, 9.137116663499195, 9.575832755371657, 9.847566281104653, 10.29633946574716, 11.05277961249685, 11.36277493082973, 11.80235331798150, 12.24644938459775, 12.92913104447428, 13.20854365633895

Graph of the $Z$-function along the critical line