Properties

Label 2-396e2-1.1-c1-0-71
Degree $2$
Conductor $156816$
Sign $-1$
Analytic cond. $1252.18$
Root an. cond. $35.3861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s − 4·13-s + 4·17-s + 6·19-s + 3·23-s − 25-s − 8·29-s + 5·31-s − 8·35-s + 7·37-s + 2·41-s + 4·43-s − 11·47-s + 9·49-s − 53-s + 3·59-s + 8·61-s + 8·65-s + 12·67-s − 13·71-s − 14·79-s − 4·83-s − 8·85-s + 11·89-s − 16·91-s − 12·95-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s − 1.10·13-s + 0.970·17-s + 1.37·19-s + 0.625·23-s − 1/5·25-s − 1.48·29-s + 0.898·31-s − 1.35·35-s + 1.15·37-s + 0.312·41-s + 0.609·43-s − 1.60·47-s + 9/7·49-s − 0.137·53-s + 0.390·59-s + 1.02·61-s + 0.992·65-s + 1.46·67-s − 1.54·71-s − 1.57·79-s − 0.439·83-s − 0.867·85-s + 1.16·89-s − 1.67·91-s − 1.23·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(156816\)    =    \(2^{4} \cdot 3^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1252.18\)
Root analytic conductor: \(35.3861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 156816,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51537895046599, −13.05968905131508, −12.44686221118460, −11.95636229073314, −11.62830264610087, −11.26134897571049, −10.94776686236362, −10.08841678798907, −9.688895954225967, −9.368355943860704, −8.435561961896327, −8.203066225975498, −7.640939785902469, −7.391448053912845, −7.009207427039877, −6.002791809855345, −5.507553626561595, −5.028368853576237, −4.634214069632618, −4.038647417531017, −3.470155848908662, −2.818212886559707, −2.225274489707875, −1.392184620709668, −0.9483697855929039, 0, 0.9483697855929039, 1.392184620709668, 2.225274489707875, 2.818212886559707, 3.470155848908662, 4.038647417531017, 4.634214069632618, 5.028368853576237, 5.507553626561595, 6.002791809855345, 7.009207427039877, 7.391448053912845, 7.640939785902469, 8.203066225975498, 8.435561961896327, 9.368355943860704, 9.688895954225967, 10.08841678798907, 10.94776686236362, 11.26134897571049, 11.62830264610087, 11.95636229073314, 12.44686221118460, 13.05968905131508, 13.51537895046599

Graph of the $Z$-function along the critical line