Properties

Label 2-149454-1.1-c1-0-39
Degree $2$
Conductor $149454$
Sign $-1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s − 4·11-s − 13-s + 2·14-s + 16-s + 17-s + 4·22-s + 23-s − 5·25-s + 26-s − 2·28-s + 6·29-s + 6·31-s − 32-s − 34-s + 4·37-s + 5·41-s + 11·43-s − 4·44-s − 46-s − 10·47-s − 3·49-s + 5·50-s − 52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s − 1.20·11-s − 0.277·13-s + 0.534·14-s + 1/4·16-s + 0.242·17-s + 0.852·22-s + 0.208·23-s − 25-s + 0.196·26-s − 0.377·28-s + 1.11·29-s + 1.07·31-s − 0.176·32-s − 0.171·34-s + 0.657·37-s + 0.780·41-s + 1.67·43-s − 0.603·44-s − 0.147·46-s − 1.45·47-s − 3/7·49-s + 0.707·50-s − 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - T + p T^{2} \) 1.17.ab
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.41172784597058, −13.15158530443092, −12.54342079532298, −12.21357224172407, −11.58692144652646, −11.13607936033321, −10.62831217426485, −10.04628868243876, −9.781076138160873, −9.491033689188010, −8.607884315140498, −8.277335398876485, −7.874008132991648, −7.211927088648572, −6.905636306518880, −6.170945014871594, −5.798634271452583, −5.257150171668507, −4.527855540811910, −4.013096863731383, −3.210302787408799, −2.579876734259561, −2.477733623759265, −1.396378288678672, −0.7020160790638200, 0, 0.7020160790638200, 1.396378288678672, 2.477733623759265, 2.579876734259561, 3.210302787408799, 4.013096863731383, 4.527855540811910, 5.257150171668507, 5.798634271452583, 6.170945014871594, 6.905636306518880, 7.211927088648572, 7.874008132991648, 8.277335398876485, 8.607884315140498, 9.491033689188010, 9.781076138160873, 10.04628868243876, 10.62831217426485, 11.13607936033321, 11.58692144652646, 12.21357224172407, 12.54342079532298, 13.15158530443092, 13.41172784597058

Graph of the $Z$-function along the critical line