Properties

Label 2-142296-1.1-c1-0-13
Degree $2$
Conductor $142296$
Sign $1$
Analytic cond. $1136.23$
Root an. cond. $33.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 5·13-s + 2·15-s + 6·17-s + 8·19-s + 23-s − 25-s − 27-s + 5·29-s − 5·31-s − 8·37-s + 5·39-s − 3·41-s − 43-s − 2·45-s + 2·47-s − 6·51-s − 10·53-s − 8·57-s − 3·59-s + 3·61-s + 10·65-s + 13·67-s − 69-s + 15·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.38·13-s + 0.516·15-s + 1.45·17-s + 1.83·19-s + 0.208·23-s − 1/5·25-s − 0.192·27-s + 0.928·29-s − 0.898·31-s − 1.31·37-s + 0.800·39-s − 0.468·41-s − 0.152·43-s − 0.298·45-s + 0.291·47-s − 0.840·51-s − 1.37·53-s − 1.05·57-s − 0.390·59-s + 0.384·61-s + 1.24·65-s + 1.58·67-s − 0.120·69-s + 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142296\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1136.23\)
Root analytic conductor: \(33.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 142296,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.085504400\)
\(L(\frac12)\) \(\approx\) \(1.085504400\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43220977181033, −12.51475944330044, −12.38785629118742, −12.03440310666738, −11.57843149175300, −11.13083931106169, −10.51686188639622, −10.00931819769019, −9.572534170399647, −9.284717962395587, −8.282178834408740, −7.962501955762067, −7.518877615451932, −7.021356568623281, −6.699716648798881, −5.753012087510368, −5.254163381661298, −5.094648978988110, −4.375767895206341, −3.615951327852443, −3.312813202363637, −2.661451284516858, −1.754858612777386, −1.073155137409236, −0.3679582439787542, 0.3679582439787542, 1.073155137409236, 1.754858612777386, 2.661451284516858, 3.312813202363637, 3.615951327852443, 4.375767895206341, 5.094648978988110, 5.254163381661298, 5.753012087510368, 6.699716648798881, 7.021356568623281, 7.518877615451932, 7.962501955762067, 8.282178834408740, 9.284717962395587, 9.572534170399647, 10.00931819769019, 10.51686188639622, 11.13083931106169, 11.57843149175300, 12.03440310666738, 12.38785629118742, 12.51475944330044, 13.43220977181033

Graph of the $Z$-function along the critical line