Properties

Label 2-139650-1.1-c1-0-74
Degree $2$
Conductor $139650$
Sign $1$
Analytic cond. $1115.11$
Root an. cond. $33.3932$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s − 2·11-s − 12-s + 5·13-s + 16-s − 17-s + 18-s − 19-s − 2·22-s − 5·23-s − 24-s + 5·26-s − 27-s + 9·29-s − 3·31-s + 32-s + 2·33-s − 34-s + 36-s + 8·37-s − 38-s − 5·39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.603·11-s − 0.288·12-s + 1.38·13-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 0.229·19-s − 0.426·22-s − 1.04·23-s − 0.204·24-s + 0.980·26-s − 0.192·27-s + 1.67·29-s − 0.538·31-s + 0.176·32-s + 0.348·33-s − 0.171·34-s + 1/6·36-s + 1.31·37-s − 0.162·38-s − 0.800·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(139650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1115.11\)
Root analytic conductor: \(33.3932\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 139650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.922420555\)
\(L(\frac12)\) \(\approx\) \(3.922420555\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + T + p T^{2} \) 1.17.b
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30892882047511, −12.83555303068448, −12.69815971841908, −11.88973331852132, −11.59090498434329, −11.04983848864737, −10.66672302173732, −10.25841682940056, −9.672004615500635, −9.063152338720197, −8.346510585383165, −8.106441936713927, −7.404482144729188, −6.896769285644326, −6.228221889975694, −5.979141552569556, −5.544548985709148, −4.852189826100944, −4.169301977110431, −4.071235508647788, −3.193324534858703, −2.579556388257282, −2.022961381094035, −1.145199258196044, −0.5972602323378662, 0.5972602323378662, 1.145199258196044, 2.022961381094035, 2.579556388257282, 3.193324534858703, 4.071235508647788, 4.169301977110431, 4.852189826100944, 5.544548985709148, 5.979141552569556, 6.228221889975694, 6.896769285644326, 7.404482144729188, 8.106441936713927, 8.346510585383165, 9.063152338720197, 9.672004615500635, 10.25841682940056, 10.66672302173732, 11.04983848864737, 11.59090498434329, 11.88973331852132, 12.69815971841908, 12.83555303068448, 13.30892882047511

Graph of the $Z$-function along the critical line