Properties

Label 2-1323-1.1-c1-0-37
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·13-s + 4·16-s − 7·19-s − 5·25-s + 11·31-s − 10·37-s − 13·43-s − 4·52-s − 13·61-s − 8·64-s − 16·67-s − 7·73-s + 14·76-s − 4·79-s + 5·97-s + 10·100-s + 20·103-s − 19·109-s + ⋯
L(s)  = 1  − 4-s + 0.554·13-s + 16-s − 1.60·19-s − 25-s + 1.97·31-s − 1.64·37-s − 1.98·43-s − 0.554·52-s − 1.66·61-s − 64-s − 1.95·67-s − 0.819·73-s + 1.60·76-s − 0.450·79-s + 0.507·97-s + 100-s + 1.97·103-s − 1.81·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 11 T + p T^{2} \) 1.31.al
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 13 T + p T^{2} \) 1.43.n
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.066839472611968948838384775491, −8.509905602511589997008412828041, −7.86092323383857706747859641278, −6.62218489901874158644992085419, −5.89971919728528192572309310294, −4.82508280591616755086822235661, −4.14835908916201458718626857057, −3.15120267703981185726680892993, −1.63769139620368418229574505514, 0, 1.63769139620368418229574505514, 3.15120267703981185726680892993, 4.14835908916201458718626857057, 4.82508280591616755086822235661, 5.89971919728528192572309310294, 6.62218489901874158644992085419, 7.86092323383857706747859641278, 8.509905602511589997008412828041, 9.066839472611968948838384775491

Graph of the $Z$-function along the critical line