Properties

Label 2-128576-1.1-c1-0-55
Degree $2$
Conductor $128576$
Sign $-1$
Analytic cond. $1026.68$
Root an. cond. $32.0419$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 6·9-s − 4·11-s − 6·13-s − 3·15-s − 3·17-s + 4·19-s + 2·23-s − 4·25-s + 9·27-s − 29-s − 9·31-s − 12·33-s + 8·37-s − 18·39-s + 41-s + 5·43-s − 6·45-s + 6·47-s − 9·51-s + 3·53-s + 4·55-s + 12·57-s + 14·59-s − 11·61-s + 6·65-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 2·9-s − 1.20·11-s − 1.66·13-s − 0.774·15-s − 0.727·17-s + 0.917·19-s + 0.417·23-s − 4/5·25-s + 1.73·27-s − 0.185·29-s − 1.61·31-s − 2.08·33-s + 1.31·37-s − 2.88·39-s + 0.156·41-s + 0.762·43-s − 0.894·45-s + 0.875·47-s − 1.26·51-s + 0.412·53-s + 0.539·55-s + 1.58·57-s + 1.82·59-s − 1.40·61-s + 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128576\)    =    \(2^{6} \cdot 7^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(1026.68\)
Root analytic conductor: \(32.0419\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 128576,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
41 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.79225206271695, −13.29995761844917, −12.88435613395262, −12.46974504811034, −11.98737156827718, −11.19706451138706, −10.86449859927256, −10.12352493476369, −9.731397637798590, −9.278049673294072, −8.990124332129049, −8.216323811483688, −7.713046142421357, −7.605850441659873, −7.158915280560428, −6.497442233011631, −5.444383463253873, −5.200370685824034, −4.466549176029197, −3.909015311433219, −3.469716419939883, −2.648282235276347, −2.437666352238117, −1.982725957874190, −0.8876880690829983, 0, 0.8876880690829983, 1.982725957874190, 2.437666352238117, 2.648282235276347, 3.469716419939883, 3.909015311433219, 4.466549176029197, 5.200370685824034, 5.444383463253873, 6.497442233011631, 7.158915280560428, 7.605850441659873, 7.713046142421357, 8.216323811483688, 8.990124332129049, 9.278049673294072, 9.731397637798590, 10.12352493476369, 10.86449859927256, 11.19706451138706, 11.98737156827718, 12.46974504811034, 12.88435613395262, 13.29995761844917, 13.79225206271695

Graph of the $Z$-function along the critical line