Properties

Label 2-124800-1.1-c1-0-133
Degree $2$
Conductor $124800$
Sign $1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s − 4·11-s − 13-s − 4·19-s + 2·21-s + 4·23-s − 27-s − 2·29-s + 4·33-s − 6·37-s + 39-s − 2·41-s − 12·43-s + 2·47-s − 3·49-s + 2·53-s + 4·57-s + 10·61-s − 2·63-s − 4·67-s − 4·69-s − 6·73-s + 8·77-s − 8·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s − 1.20·11-s − 0.277·13-s − 0.917·19-s + 0.436·21-s + 0.834·23-s − 0.192·27-s − 0.371·29-s + 0.696·33-s − 0.986·37-s + 0.160·39-s − 0.312·41-s − 1.82·43-s + 0.291·47-s − 3/7·49-s + 0.274·53-s + 0.529·57-s + 1.28·61-s − 0.251·63-s − 0.488·67-s − 0.481·69-s − 0.702·73-s + 0.911·77-s − 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85100076258564, −13.28729835127552, −13.06710564343506, −12.64618028031736, −12.13948541947115, −11.56530924322405, −11.11557946530156, −10.55895359077104, −10.09849313520898, −9.931844158471188, −9.080528174097851, −8.679674422950874, −8.116492757660045, −7.511206980393617, −6.973325752819708, −6.603097011940784, −6.030264900162981, −5.389733679015297, −5.044636436065312, −4.502032017103210, −3.709637281950633, −3.225728331442012, −2.564122443611841, −1.970058215573787, −1.145947263107574, 0, 0, 1.145947263107574, 1.970058215573787, 2.564122443611841, 3.225728331442012, 3.709637281950633, 4.502032017103210, 5.044636436065312, 5.389733679015297, 6.030264900162981, 6.603097011940784, 6.973325752819708, 7.511206980393617, 8.116492757660045, 8.679674422950874, 9.080528174097851, 9.931844158471188, 10.09849313520898, 10.55895359077104, 11.11557946530156, 11.56530924322405, 12.13948541947115, 12.64618028031736, 13.06710564343506, 13.28729835127552, 13.85100076258564

Graph of the $Z$-function along the critical line