Properties

Label 2-119952-1.1-c1-0-153
Degree $2$
Conductor $119952$
Sign $-1$
Analytic cond. $957.821$
Root an. cond. $30.9486$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 11-s + 3·13-s − 17-s − 2·19-s + 4·23-s − 4·25-s + 2·31-s − 7·37-s + 11·43-s + 10·47-s − 9·53-s + 55-s − 4·59-s − 4·61-s + 3·65-s + 13·67-s − 8·71-s + 73-s + 79-s − 9·83-s − 85-s + 3·89-s − 2·95-s − 7·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.301·11-s + 0.832·13-s − 0.242·17-s − 0.458·19-s + 0.834·23-s − 4/5·25-s + 0.359·31-s − 1.15·37-s + 1.67·43-s + 1.45·47-s − 1.23·53-s + 0.134·55-s − 0.520·59-s − 0.512·61-s + 0.372·65-s + 1.58·67-s − 0.949·71-s + 0.117·73-s + 0.112·79-s − 0.987·83-s − 0.108·85-s + 0.317·89-s − 0.205·95-s − 0.710·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 119952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(119952\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(957.821\)
Root analytic conductor: \(30.9486\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 119952,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74822335732440, −13.45554598128202, −12.84012985454486, −12.35838728262791, −11.99940536500509, −11.21857998996112, −10.89322492472004, −10.57513441651374, −9.803710458891166, −9.436988888014767, −8.894679077743324, −8.517756895246652, −7.922330155911926, −7.304291495123132, −6.818260296572755, −6.247277705584857, −5.821093393664733, −5.333447500541082, −4.589987994785980, −4.094000737643677, −3.555937521081718, −2.840803245293572, −2.258145034409541, −1.546338209324946, −0.9827345466318640, 0, 0.9827345466318640, 1.546338209324946, 2.258145034409541, 2.840803245293572, 3.555937521081718, 4.094000737643677, 4.589987994785980, 5.333447500541082, 5.821093393664733, 6.247277705584857, 6.818260296572755, 7.304291495123132, 7.922330155911926, 8.517756895246652, 8.894679077743324, 9.436988888014767, 9.803710458891166, 10.57513441651374, 10.89322492472004, 11.21857998996112, 11.99940536500509, 12.35838728262791, 12.84012985454486, 13.45554598128202, 13.74822335732440

Graph of the $Z$-function along the critical line