Properties

Label 2-119658-1.1-c1-0-22
Degree $2$
Conductor $119658$
Sign $1$
Analytic cond. $955.473$
Root an. cond. $30.9107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3·5-s − 6-s + 8-s + 9-s + 3·10-s − 11-s − 12-s + 4·13-s − 3·15-s + 16-s + 3·17-s + 18-s − 2·19-s + 3·20-s − 22-s − 24-s + 4·25-s + 4·26-s − 27-s + 6·29-s − 3·30-s − 2·31-s + 32-s + 33-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.301·11-s − 0.288·12-s + 1.10·13-s − 0.774·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.458·19-s + 0.670·20-s − 0.213·22-s − 0.204·24-s + 4/5·25-s + 0.784·26-s − 0.192·27-s + 1.11·29-s − 0.547·30-s − 0.359·31-s + 0.176·32-s + 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 119658 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119658 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(119658\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(955.473\)
Root analytic conductor: \(30.9107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 119658,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.534327413\)
\(L(\frac12)\) \(\approx\) \(5.534327413\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
37 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64671378783899, −13.10856253729558, −12.66634937037077, −12.29061975610932, −11.63543154298929, −11.16694281304517, −10.66937452569070, −10.24329149955110, −9.877147676016351, −9.249017484724638, −8.699932300994397, −8.068309519118034, −7.578760095576121, −6.746744589050427, −6.346240566048426, −6.109439712748281, −5.445540838830760, −5.112987632476027, −4.543304503641710, −3.788713779264484, −3.269714451600963, −2.568749280375988, −1.912288321828250, −1.388631935650978, −0.6675061868426345, 0.6675061868426345, 1.388631935650978, 1.912288321828250, 2.568749280375988, 3.269714451600963, 3.788713779264484, 4.543304503641710, 5.112987632476027, 5.445540838830760, 6.109439712748281, 6.346240566048426, 6.746744589050427, 7.578760095576121, 8.068309519118034, 8.699932300994397, 9.249017484724638, 9.877147676016351, 10.24329149955110, 10.66937452569070, 11.16694281304517, 11.63543154298929, 12.29061975610932, 12.66634937037077, 13.10856253729558, 13.64671378783899

Graph of the $Z$-function along the critical line