Properties

Label 2-112338-1.1-c1-0-0
Degree $2$
Conductor $112338$
Sign $1$
Analytic cond. $897.023$
Root an. cond. $29.9503$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s + 3·7-s − 8-s − 2·10-s + 4·11-s − 4·13-s − 3·14-s + 16-s − 7·17-s − 6·19-s + 2·20-s − 4·22-s − 9·23-s − 25-s + 4·26-s + 3·28-s − 2·29-s − 4·31-s − 32-s + 7·34-s + 6·35-s − 2·37-s + 6·38-s − 2·40-s − 11·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s + 1.13·7-s − 0.353·8-s − 0.632·10-s + 1.20·11-s − 1.10·13-s − 0.801·14-s + 1/4·16-s − 1.69·17-s − 1.37·19-s + 0.447·20-s − 0.852·22-s − 1.87·23-s − 1/5·25-s + 0.784·26-s + 0.566·28-s − 0.371·29-s − 0.718·31-s − 0.176·32-s + 1.20·34-s + 1.01·35-s − 0.328·37-s + 0.973·38-s − 0.316·40-s − 1.71·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112338\)    =    \(2 \cdot 3^{2} \cdot 79^{2}\)
Sign: $1$
Analytic conductor: \(897.023\)
Root analytic conductor: \(29.9503\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112338,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7112209179\)
\(L(\frac12)\) \(\approx\) \(0.7112209179\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
79 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 11 T + p T^{2} \) 1.41.l
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82017189390500, −13.23341446484385, −12.45482977843438, −12.09947899801307, −11.71507620643935, −11.00933336273420, −10.73775309544425, −10.21167590334557, −9.630853948648409, −9.164108471683325, −8.800302772004546, −8.337484955452514, −7.628754487387273, −7.294180282214006, −6.525769543485454, −6.189299260257718, −5.748799712624497, −4.876002358437818, −4.403077050047546, −4.025434063580246, −3.023333428228494, −2.085587268145103, −1.913732699864690, −1.602487037706630, −0.2630933467500610, 0.2630933467500610, 1.602487037706630, 1.913732699864690, 2.085587268145103, 3.023333428228494, 4.025434063580246, 4.403077050047546, 4.876002358437818, 5.748799712624497, 6.189299260257718, 6.525769543485454, 7.294180282214006, 7.628754487387273, 8.337484955452514, 8.800302772004546, 9.164108471683325, 9.630853948648409, 10.21167590334557, 10.73775309544425, 11.00933336273420, 11.71507620643935, 12.09947899801307, 12.45482977843438, 13.23341446484385, 13.82017189390500

Graph of the $Z$-function along the critical line