Properties

Label 2-10608-1.1-c1-0-9
Degree $2$
Conductor $10608$
Sign $1$
Analytic cond. $84.7053$
Root an. cond. $9.20354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 2·7-s + 9-s − 4·11-s + 13-s + 2·15-s + 17-s + 8·19-s + 2·21-s − 25-s + 27-s + 2·29-s + 6·31-s − 4·33-s + 4·35-s − 4·37-s + 39-s + 2·41-s + 4·43-s + 2·45-s + 6·47-s − 3·49-s + 51-s + 6·53-s − 8·55-s + 8·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s − 1.20·11-s + 0.277·13-s + 0.516·15-s + 0.242·17-s + 1.83·19-s + 0.436·21-s − 1/5·25-s + 0.192·27-s + 0.371·29-s + 1.07·31-s − 0.696·33-s + 0.676·35-s − 0.657·37-s + 0.160·39-s + 0.312·41-s + 0.609·43-s + 0.298·45-s + 0.875·47-s − 3/7·49-s + 0.140·51-s + 0.824·53-s − 1.07·55-s + 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10608\)    =    \(2^{4} \cdot 3 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(84.7053\)
Root analytic conductor: \(9.20354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.790556263\)
\(L(\frac12)\) \(\approx\) \(3.790556263\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.40381101611821, −15.92014314065443, −15.45557732106174, −14.78180542983223, −14.04798366849391, −13.78293927628797, −13.36406137028003, −12.62700604128514, −11.90253748874008, −11.38807250143418, −10.43698657509717, −10.21452648034515, −9.502158708224278, −8.899948293572046, −8.180576040074919, −7.668580281882211, −7.147709469789712, −6.123509425227531, −5.489247980650012, −5.025130475130475, −4.182421826163749, −3.151440673664317, −2.603930251980760, −1.767281500582274, −0.9278222189050818, 0.9278222189050818, 1.767281500582274, 2.603930251980760, 3.151440673664317, 4.182421826163749, 5.025130475130475, 5.489247980650012, 6.123509425227531, 7.147709469789712, 7.668580281882211, 8.180576040074919, 8.899948293572046, 9.502158708224278, 10.21452648034515, 10.43698657509717, 11.38807250143418, 11.90253748874008, 12.62700604128514, 13.36406137028003, 13.78293927628797, 14.04798366849391, 14.78180542983223, 15.45557732106174, 15.92014314065443, 16.40381101611821

Graph of the $Z$-function along the critical line