Properties

Label 2-101640-1.1-c1-0-42
Degree $2$
Conductor $101640$
Sign $-1$
Analytic cond. $811.599$
Root an. cond. $28.4885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 7-s + 9-s − 6·13-s − 15-s + 2·17-s − 4·19-s + 21-s + 4·23-s + 25-s + 27-s − 6·29-s − 35-s + 6·37-s − 6·39-s + 2·41-s + 4·43-s − 45-s + 8·47-s + 49-s + 2·51-s − 2·53-s − 4·57-s − 12·59-s − 6·61-s + 63-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 1.66·13-s − 0.258·15-s + 0.485·17-s − 0.917·19-s + 0.218·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.169·35-s + 0.986·37-s − 0.960·39-s + 0.312·41-s + 0.609·43-s − 0.149·45-s + 1.16·47-s + 1/7·49-s + 0.280·51-s − 0.274·53-s − 0.529·57-s − 1.56·59-s − 0.768·61-s + 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 101640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(101640\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(811.599\)
Root analytic conductor: \(28.4885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 101640,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20651200445157, −13.35541685610331, −13.08205088731009, −12.49083073862810, −12.05540700952131, −11.70358882572150, −10.82566263301922, −10.70334828483103, −10.02630373906378, −9.359914940409862, −9.111933928864796, −8.579560351371553, −7.727630773466404, −7.561124752851898, −7.294260877000290, −6.383320762806826, −5.908885332378222, −5.118485438787180, −4.639439315159841, −4.256466514835704, −3.506280979746661, −2.888251981265848, −2.358846893908324, −1.759606628100814, −0.8616579133198362, 0, 0.8616579133198362, 1.759606628100814, 2.358846893908324, 2.888251981265848, 3.506280979746661, 4.256466514835704, 4.639439315159841, 5.118485438787180, 5.908885332378222, 6.383320762806826, 7.294260877000290, 7.561124752851898, 7.727630773466404, 8.579560351371553, 9.111933928864796, 9.359914940409862, 10.02630373906378, 10.70334828483103, 10.82566263301922, 11.70358882572150, 12.05540700952131, 12.49083073862810, 13.08205088731009, 13.35541685610331, 14.20651200445157

Graph of the $Z$-function along the critical line