Properties

Label 4-195e2-1.1-c1e2-0-11
Degree $4$
Conductor $38025$
Sign $1$
Analytic cond. $2.42450$
Root an. cond. $1.24783$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 8·4-s + 4·5-s − 6·7-s + 8·8-s − 9-s + 16·10-s + 6·13-s − 24·14-s − 4·16-s − 4·18-s + 32·20-s + 11·25-s + 24·26-s − 48·28-s − 32·32-s − 24·35-s − 8·36-s − 6·37-s + 32·40-s − 4·45-s − 16·47-s + 13·49-s + 44·50-s + 48·52-s − 48·56-s − 6·61-s + ⋯
L(s)  = 1  + 2.82·2-s + 4·4-s + 1.78·5-s − 2.26·7-s + 2.82·8-s − 1/3·9-s + 5.05·10-s + 1.66·13-s − 6.41·14-s − 16-s − 0.942·18-s + 7.15·20-s + 11/5·25-s + 4.70·26-s − 9.07·28-s − 5.65·32-s − 4.05·35-s − 4/3·36-s − 0.986·37-s + 5.05·40-s − 0.596·45-s − 2.33·47-s + 13/7·49-s + 6.22·50-s + 6.65·52-s − 6.41·56-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(38025\)    =    \(3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2.42450\)
Root analytic conductor: \(1.24783\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 38025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.268228478\)
\(L(\frac12)\) \(\approx\) \(5.268228478\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
13$C_2$ \( 1 - 6 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 57 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 117 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 177 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05339485371485924951721421283, −12.76516899384898807864752740249, −12.20736739548103568740661783218, −11.56590017545580684504009540889, −10.99352238501862771238422594548, −10.51273807189150017031227137057, −9.604610484155876757013790124493, −9.582773517541079645706381718497, −8.961688636267927504156376033996, −8.320176015559696503119692646914, −6.81041947497301234744225777771, −6.60004458525053946393473006563, −6.16788341705015149443302022878, −6.03904336151484199706547834268, −5.21187206796291029661184384559, −4.97410276082022526443411931276, −3.61913858463703119456521164771, −3.60236536617269644391244940910, −2.92994329873548240638233866068, −2.13285056855256934939378264115, 2.13285056855256934939378264115, 2.92994329873548240638233866068, 3.60236536617269644391244940910, 3.61913858463703119456521164771, 4.97410276082022526443411931276, 5.21187206796291029661184384559, 6.03904336151484199706547834268, 6.16788341705015149443302022878, 6.60004458525053946393473006563, 6.81041947497301234744225777771, 8.320176015559696503119692646914, 8.961688636267927504156376033996, 9.582773517541079645706381718497, 9.604610484155876757013790124493, 10.51273807189150017031227137057, 10.99352238501862771238422594548, 11.56590017545580684504009540889, 12.20736739548103568740661783218, 12.76516899384898807864752740249, 13.05339485371485924951721421283

Graph of the $Z$-function along the critical line