L(s) = 1 | + 4-s − 3·5-s + 2·7-s + 16-s − 3·17-s − 3·20-s + 4·25-s + 2·28-s − 6·35-s + 4·37-s − 9·41-s + 7·43-s + 3·47-s − 3·49-s − 9·59-s + 64-s − 2·67-s − 3·68-s + 13·79-s − 3·80-s + 9·83-s + 9·85-s + 27·89-s + 4·100-s + 21·101-s + 10·109-s + 2·112-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 1.34·5-s + 0.755·7-s + 1/4·16-s − 0.727·17-s − 0.670·20-s + 4/5·25-s + 0.377·28-s − 1.01·35-s + 0.657·37-s − 1.40·41-s + 1.06·43-s + 0.437·47-s − 3/7·49-s − 1.17·59-s + 1/8·64-s − 0.244·67-s − 0.363·68-s + 1.46·79-s − 0.335·80-s + 0.987·83-s + 0.976·85-s + 2.86·89-s + 2/5·100-s + 2.08·101-s + 0.957·109-s + 0.188·112-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.516493768\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.516493768\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.556493239835276697590993097578, −8.039922340386931372098788291605, −7.68794886483652809504912275802, −7.54251869422024537782489436757, −6.78163432702886401313762831784, −6.48630338069938182722751137406, −5.89752417964332046465351622330, −5.23378862434899764945376695841, −4.61393396824419085033327398425, −4.44300672339463317384217423615, −3.59860794598074088361512451480, −3.29724093437347876856199244629, −2.38783805629633132430519997483, −1.79511708048681920843006667623, −0.68196528440349150030179480817,
0.68196528440349150030179480817, 1.79511708048681920843006667623, 2.38783805629633132430519997483, 3.29724093437347876856199244629, 3.59860794598074088361512451480, 4.44300672339463317384217423615, 4.61393396824419085033327398425, 5.23378862434899764945376695841, 5.89752417964332046465351622330, 6.48630338069938182722751137406, 6.78163432702886401313762831784, 7.54251869422024537782489436757, 7.68794886483652809504912275802, 8.039922340386931372098788291605, 8.556493239835276697590993097578