L(s) = 1 | + 3·3-s − 4-s + 4·9-s + 3·11-s − 3·12-s − 13-s − 3·16-s − 8·17-s + 4·19-s + 25-s − 31-s + 9·33-s − 4·36-s + 37-s − 3·39-s − 3·44-s − 19·47-s − 9·48-s + 5·49-s − 24·51-s + 52-s + 12·57-s + 7·64-s − 2·67-s + 8·68-s − 19·71-s + 3·75-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 1/2·4-s + 4/3·9-s + 0.904·11-s − 0.866·12-s − 0.277·13-s − 3/4·16-s − 1.94·17-s + 0.917·19-s + 1/5·25-s − 0.179·31-s + 1.56·33-s − 2/3·36-s + 0.164·37-s − 0.480·39-s − 0.452·44-s − 2.77·47-s − 1.29·48-s + 5/7·49-s − 3.36·51-s + 0.138·52-s + 1.58·57-s + 7/8·64-s − 0.244·67-s + 0.970·68-s − 2.25·71-s + 0.346·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961311 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961311 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.150467818171834488610710637020, −7.48687961828468267309351189874, −7.16740500706871057543377867413, −6.74688839072444554024791577204, −6.30047493765635272108561055297, −5.70762301987707015806254310957, −4.93608646533576050030667301286, −4.61081159001824922269620635930, −4.12718767561803680872179162093, −3.68353641398139212057840080491, −3.07529552861539263039694233706, −2.63768646049488002186868027872, −2.01826907609250944288540364827, −1.43562235377481692507206635595, 0,
1.43562235377481692507206635595, 2.01826907609250944288540364827, 2.63768646049488002186868027872, 3.07529552861539263039694233706, 3.68353641398139212057840080491, 4.12718767561803680872179162093, 4.61081159001824922269620635930, 4.93608646533576050030667301286, 5.70762301987707015806254310957, 6.30047493765635272108561055297, 6.74688839072444554024791577204, 7.16740500706871057543377867413, 7.48687961828468267309351189874, 8.150467818171834488610710637020