L(s) = 1 | + 3-s + 4-s − 2·9-s − 11-s + 12-s + 3·13-s − 3·16-s + 8·17-s − 2·19-s − 25-s − 2·27-s − 13·31-s − 33-s − 2·36-s − 7·37-s + 3·39-s − 44-s − 3·47-s − 3·48-s − 5·49-s + 8·51-s + 3·52-s − 2·57-s − 7·64-s − 12·67-s + 8·68-s + 7·71-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s − 2/3·9-s − 0.301·11-s + 0.288·12-s + 0.832·13-s − 3/4·16-s + 1.94·17-s − 0.458·19-s − 1/5·25-s − 0.384·27-s − 2.33·31-s − 0.174·33-s − 1/3·36-s − 1.15·37-s + 0.480·39-s − 0.150·44-s − 0.437·47-s − 0.433·48-s − 5/7·49-s + 1.12·51-s + 0.416·52-s − 0.264·57-s − 7/8·64-s − 1.46·67-s + 0.970·68-s + 0.830·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961311 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961311 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.934336586949930484322195014050, −7.50920687241841829085146875556, −7.21915202592452182321080115831, −6.50802296315077976390834735159, −6.23493114521968720384039862794, −5.66465487624548801166136700141, −5.27171458328237870117399242463, −4.88229575341483451492952196532, −3.94432508872565475591945924647, −3.59891442855010729414397492585, −3.18548235530684756677134070279, −2.59682177373666681893533850423, −1.92742500750037864745359695404, −1.36058927841735672452870773565, 0,
1.36058927841735672452870773565, 1.92742500750037864745359695404, 2.59682177373666681893533850423, 3.18548235530684756677134070279, 3.59891442855010729414397492585, 3.94432508872565475591945924647, 4.88229575341483451492952196532, 5.27171458328237870117399242463, 5.66465487624548801166136700141, 6.23493114521968720384039862794, 6.50802296315077976390834735159, 7.21915202592452182321080115831, 7.50920687241841829085146875556, 7.934336586949930484322195014050