L(s) = 1 | + 2-s + 4-s + 8-s − 9·11-s + 16-s − 3·17-s − 8·19-s − 9·22-s − 7·25-s + 32-s − 3·34-s − 8·38-s − 3·41-s + 43-s − 9·44-s + 8·49-s − 7·50-s + 9·59-s + 64-s − 2·67-s − 3·68-s − 8·73-s − 8·76-s − 3·82-s − 3·83-s + 86-s − 9·88-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 2.71·11-s + 1/4·16-s − 0.727·17-s − 1.83·19-s − 1.91·22-s − 7/5·25-s + 0.176·32-s − 0.514·34-s − 1.29·38-s − 0.468·41-s + 0.152·43-s − 1.35·44-s + 8/7·49-s − 0.989·50-s + 1.17·59-s + 1/8·64-s − 0.244·67-s − 0.363·68-s − 0.936·73-s − 0.917·76-s − 0.331·82-s − 0.329·83-s + 0.107·86-s − 0.959·88-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.466735420720199237667881028373, −8.632486549622069058973429947631, −8.400531122375489278561384205409, −7.78052733578435752873905658020, −7.44553777356754761019567442693, −6.79406350907268642327012460387, −6.16648379226767935948841723392, −5.65538046868817425384744042033, −5.22014038378074018119269838350, −4.56159315065695703185774077470, −4.10263164029946493874977314399, −3.24226054134041403316112910828, −2.35224469819524360178368958502, −2.17811480859044972128444750018, 0,
2.17811480859044972128444750018, 2.35224469819524360178368958502, 3.24226054134041403316112910828, 4.10263164029946493874977314399, 4.56159315065695703185774077470, 5.22014038378074018119269838350, 5.65538046868817425384744042033, 6.16648379226767935948841723392, 6.79406350907268642327012460387, 7.44553777356754761019567442693, 7.78052733578435752873905658020, 8.400531122375489278561384205409, 8.632486549622069058973429947631, 9.466735420720199237667881028373