L(s) = 1 | + 9-s − 13-s − 4·17-s − 13·29-s + 13·37-s − 2·41-s + 11·49-s − 6·53-s + 61-s + 81-s + 3·89-s + 16·97-s − 101-s + 16·109-s − 6·113-s − 117-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 1/3·9-s − 0.277·13-s − 0.970·17-s − 2.41·29-s + 2.13·37-s − 0.312·41-s + 11/7·49-s − 0.824·53-s + 0.128·61-s + 1/9·81-s + 0.317·89-s + 1.62·97-s − 0.0995·101-s + 1.53·109-s − 0.564·113-s − 0.0924·117-s + 4/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.583374277\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.583374277\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.304126583266294621780630197063, −7.74570056641618047210418698125, −7.37984147271246712941288426266, −7.16315557864195614633489541545, −6.36716339060585897194511547465, −6.17541782640688396932501617759, −5.55871019129010756089718522046, −5.11949964437806480749941852055, −4.47423252236251737624200414178, −4.13034430709533532271265823309, −3.59914762773414848340718450882, −2.88923088454388395311825499669, −2.22513293712655287939883331698, −1.73499233763016733927354991889, −0.61123201480997862739229051511,
0.61123201480997862739229051511, 1.73499233763016733927354991889, 2.22513293712655287939883331698, 2.88923088454388395311825499669, 3.59914762773414848340718450882, 4.13034430709533532271265823309, 4.47423252236251737624200414178, 5.11949964437806480749941852055, 5.55871019129010756089718522046, 6.17541782640688396932501617759, 6.36716339060585897194511547465, 7.16315557864195614633489541545, 7.37984147271246712941288426266, 7.74570056641618047210418698125, 8.304126583266294621780630197063