| L(s) = 1 | + 2·5-s − 9-s − 2·13-s + 2·17-s − 25-s − 29-s − 4·37-s − 6·41-s − 2·45-s − 9·49-s − 19·53-s + 61-s − 4·65-s + 6·73-s − 8·81-s + 4·85-s − 26·89-s − 2·97-s − 5·101-s + 14·109-s + 26·113-s + 2·117-s + 7·121-s − 12·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | + 0.894·5-s − 1/3·9-s − 0.554·13-s + 0.485·17-s − 1/5·25-s − 0.185·29-s − 0.657·37-s − 0.937·41-s − 0.298·45-s − 9/7·49-s − 2.60·53-s + 0.128·61-s − 0.496·65-s + 0.702·73-s − 8/9·81-s + 0.433·85-s − 2.75·89-s − 0.203·97-s − 0.497·101-s + 1.34·109-s + 2.44·113-s + 0.184·117-s + 7/11·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.225457011769635127603366987366, −7.902360070672120744838521187489, −7.24931711813408962529506824590, −6.92366460218482982346568505974, −6.30005929447839619762995140764, −5.97707206742271818223619134933, −5.48540942993696856255618086177, −4.95752653635396269834516611094, −4.63527967374116732471529633381, −3.79304489941910565947003882615, −3.23465046512312398116175487026, −2.72644796158420944393983593719, −1.93254420001541197697437762494, −1.44070204222194142618697579148, 0,
1.44070204222194142618697579148, 1.93254420001541197697437762494, 2.72644796158420944393983593719, 3.23465046512312398116175487026, 3.79304489941910565947003882615, 4.63527967374116732471529633381, 4.95752653635396269834516611094, 5.48540942993696856255618086177, 5.97707206742271818223619134933, 6.30005929447839619762995140764, 6.92366460218482982346568505974, 7.24931711813408962529506824590, 7.902360070672120744838521187489, 8.225457011769635127603366987366