Properties

Label 8-99e4-1.1-c7e4-0-1
Degree $8$
Conductor $96059601$
Sign $1$
Analytic cond. $914748.$
Root an. cond. $5.56112$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 46·4-s − 537·5-s + 170·7-s + 140·8-s + 5.32e3·11-s + 4.25e3·13-s − 5.08e3·16-s − 5.43e4·17-s + 6.78e4·19-s − 2.47e4·20-s + 9.01e3·23-s − 800·25-s + 7.82e3·28-s − 2.34e5·29-s + 1.89e5·31-s + 3.08e4·32-s − 9.12e4·35-s + 1.27e5·37-s − 7.51e4·40-s − 2.89e5·41-s + 7.04e5·43-s + 2.44e5·44-s + 1.72e6·47-s − 1.56e6·49-s + 1.95e5·52-s − 1.09e6·53-s − 2.85e6·55-s + ⋯
L(s)  = 1  + 0.359·4-s − 1.92·5-s + 0.187·7-s + 0.0966·8-s + 1.20·11-s + 0.536·13-s − 0.310·16-s − 2.68·17-s + 2.26·19-s − 0.690·20-s + 0.154·23-s − 0.0102·25-s + 0.0673·28-s − 1.78·29-s + 1.14·31-s + 0.166·32-s − 0.359·35-s + 0.415·37-s − 0.185·40-s − 0.656·41-s + 1.35·43-s + 0.433·44-s + 2.42·47-s − 1.89·49-s + 0.192·52-s − 1.01·53-s − 2.31·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96059601 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96059601 ^{s/2} \, \Gamma_{\C}(s+7/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(96059601\)    =    \(3^{8} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(914748.\)
Root analytic conductor: \(5.56112\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 96059601,\ (\ :7/2, 7/2, 7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.451899372\)
\(L(\frac12)\) \(\approx\) \(2.451899372\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11$C_1$ \( ( 1 - p^{3} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 23 p T^{2} - 35 p^{2} T^{3} + 225 p^{5} T^{4} - 35 p^{9} T^{5} - 23 p^{15} T^{6} + p^{28} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 537 T + 289169 T^{2} + 21850106 p T^{3} + 1357177734 p^{2} T^{4} + 21850106 p^{8} T^{5} + 289169 p^{14} T^{6} + 537 p^{21} T^{7} + p^{28} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 170 T + 227368 p T^{2} + 385746230 T^{3} + 1352587842542 T^{4} + 385746230 p^{7} T^{5} + 227368 p^{15} T^{6} - 170 p^{21} T^{7} + p^{28} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 4250 T + 146352268 T^{2} - 163565755750 T^{3} + 9973548692894534 T^{4} - 163565755750 p^{7} T^{5} + 146352268 p^{14} T^{6} - 4250 p^{21} T^{7} + p^{28} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 54300 T + 2339944100 T^{2} + 68617141197220 T^{3} + 1577703633559808886 T^{4} + 68617141197220 p^{7} T^{5} + 2339944100 p^{14} T^{6} + 54300 p^{21} T^{7} + p^{28} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 67844 T + 3988659532 T^{2} - 151149892040772 T^{3} + 5214797241291386070 T^{4} - 151149892040772 p^{7} T^{5} + 3988659532 p^{14} T^{6} - 67844 p^{21} T^{7} + p^{28} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 9015 T + 5859983975 T^{2} - 1114173371080 T^{3} + 27480155779765016976 T^{4} - 1114173371080 p^{7} T^{5} + 5859983975 p^{14} T^{6} - 9015 p^{21} T^{7} + p^{28} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 234078 T + 45943187444 T^{2} + 4197289348403874 T^{3} + \)\(57\!\cdots\!66\)\( T^{4} + 4197289348403874 p^{7} T^{5} + 45943187444 p^{14} T^{6} + 234078 p^{21} T^{7} + p^{28} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 189857 T + 109086552559 T^{2} - 15043423507120000 T^{3} + \)\(44\!\cdots\!20\)\( T^{4} - 15043423507120000 p^{7} T^{5} + 109086552559 p^{14} T^{6} - 189857 p^{21} T^{7} + p^{28} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 127895 T + 134838507565 T^{2} - 48759217149453270 T^{3} + \)\(11\!\cdots\!06\)\( T^{4} - 48759217149453270 p^{7} T^{5} + 134838507565 p^{14} T^{6} - 127895 p^{21} T^{7} + p^{28} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 289842 T + 612672453332 T^{2} + 98108268285963238 T^{3} + \)\(15\!\cdots\!78\)\( T^{4} + 98108268285963238 p^{7} T^{5} + 612672453332 p^{14} T^{6} + 289842 p^{21} T^{7} + p^{28} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 704930 T + 844898979712 T^{2} - 468056840641753290 T^{3} + \)\(31\!\cdots\!34\)\( T^{4} - 468056840641753290 p^{7} T^{5} + 844898979712 p^{14} T^{6} - 704930 p^{21} T^{7} + p^{28} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 1729080 T + 2943241041980 T^{2} - 2755356691646036440 T^{3} + \)\(24\!\cdots\!38\)\( T^{4} - 2755356691646036440 p^{7} T^{5} + 2943241041980 p^{14} T^{6} - 1729080 p^{21} T^{7} + p^{28} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 1098660 T + 3684975589940 T^{2} + 2958455245352196780 T^{3} + \)\(60\!\cdots\!06\)\( T^{4} + 2958455245352196780 p^{7} T^{5} + 3684975589940 p^{14} T^{6} + 1098660 p^{21} T^{7} + p^{28} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 4665777 T + 13811331261011 T^{2} - 31029840262037202148 T^{3} + \)\(56\!\cdots\!60\)\( T^{4} - 31029840262037202148 p^{7} T^{5} + 13811331261011 p^{14} T^{6} - 4665777 p^{21} T^{7} + p^{28} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 310610 T + 10401137851228 T^{2} - 2935186858120476750 T^{3} + \)\(45\!\cdots\!78\)\( T^{4} - 2935186858120476750 p^{7} T^{5} + 10401137851228 p^{14} T^{6} - 310610 p^{21} T^{7} + p^{28} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 3368245 T + 391116105937 p T^{2} + 59223763433080251700 T^{3} + \)\(24\!\cdots\!12\)\( T^{4} + 59223763433080251700 p^{7} T^{5} + 391116105937 p^{15} T^{6} + 3368245 p^{21} T^{7} + p^{28} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 3416541 T + 19147459152479 T^{2} - 50840343388526872176 T^{3} + \)\(24\!\cdots\!60\)\( T^{4} - 50840343388526872176 p^{7} T^{5} + 19147459152479 p^{14} T^{6} - 3416541 p^{21} T^{7} + p^{28} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 11466230 T + 83249782918924 T^{2} - \)\(40\!\cdots\!70\)\( T^{3} + \)\(15\!\cdots\!62\)\( T^{4} - \)\(40\!\cdots\!70\)\( p^{7} T^{5} + 83249782918924 p^{14} T^{6} - 11466230 p^{21} T^{7} + p^{28} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 566282 T + 54686769020584 T^{2} - 16962398190802371386 T^{3} + \)\(13\!\cdots\!66\)\( T^{4} - 16962398190802371386 p^{7} T^{5} + 54686769020584 p^{14} T^{6} - 566282 p^{21} T^{7} + p^{28} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 4220790 T + 53047302130736 T^{2} - \)\(18\!\cdots\!50\)\( T^{3} + \)\(21\!\cdots\!82\)\( T^{4} - \)\(18\!\cdots\!50\)\( p^{7} T^{5} + 53047302130736 p^{14} T^{6} - 4220790 p^{21} T^{7} + p^{28} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 18265191 T + 262942921135913 T^{2} + \)\(24\!\cdots\!06\)\( T^{3} + \)\(19\!\cdots\!38\)\( T^{4} + \)\(24\!\cdots\!06\)\( p^{7} T^{5} + 262942921135913 p^{14} T^{6} + 18265191 p^{21} T^{7} + p^{28} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 11425325 T + 204974824565293 T^{2} - \)\(18\!\cdots\!30\)\( T^{3} + \)\(24\!\cdots\!26\)\( T^{4} - \)\(18\!\cdots\!30\)\( p^{7} T^{5} + 204974824565293 p^{14} T^{6} - 11425325 p^{21} T^{7} + p^{28} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.817582973587994564154287522950, −8.349919769840932362722444871726, −8.145837593800886185396710443765, −8.037330699902605922074983220252, −7.51249908506827355736114410602, −7.38236662701943242642556164991, −7.03863994495352136855738730309, −6.78615262612498246004170962549, −6.36734200586373518813573447233, −6.32922343565299287528140734411, −5.51624064906577284843041443929, −5.48436268425985486932957619823, −5.06419627688419634984872691692, −4.26404643083788251581983837241, −4.21793415558594325273645373351, −4.20605390387454732225309686820, −3.70917914009172403011178388867, −3.25610208281664073861136065988, −3.03569373238273678154993076430, −2.16848626773154325926269565241, −2.15152837988905769529022060588, −1.63418915620492500801315075667, −0.830656847041537117940734973835, −0.77575208766277450928056373308, −0.28516294809412403254964148455, 0.28516294809412403254964148455, 0.77575208766277450928056373308, 0.830656847041537117940734973835, 1.63418915620492500801315075667, 2.15152837988905769529022060588, 2.16848626773154325926269565241, 3.03569373238273678154993076430, 3.25610208281664073861136065988, 3.70917914009172403011178388867, 4.20605390387454732225309686820, 4.21793415558594325273645373351, 4.26404643083788251581983837241, 5.06419627688419634984872691692, 5.48436268425985486932957619823, 5.51624064906577284843041443929, 6.32922343565299287528140734411, 6.36734200586373518813573447233, 6.78615262612498246004170962549, 7.03863994495352136855738730309, 7.38236662701943242642556164991, 7.51249908506827355736114410602, 8.037330699902605922074983220252, 8.145837593800886185396710443765, 8.349919769840932362722444871726, 8.817582973587994564154287522950

Graph of the $Z$-function along the critical line